PLAN

- Introduction
- Steady Stokes problem and Uzawa algorithm
- Unsteady Stokes problem and Uzawa algorithm
- Time splitting and spectral element for the Unsteady Stokes problem
- Parallel Domain Decomposition Goda scheme.
- Conclusion.

The time-dependent Stokes problem

$$\frac{\partial \mathbf{u}}{\partial t} - \frac{1}{Re} \Delta \mathbf{u} + \operatorname{grad} \mathbf{p} = \mathbf{f} \qquad \Omega_t,$$

$$\operatorname{div} \mathbf{u} = 0 \qquad \Omega_t,$$

$$\mathbf{u} = 0 \qquad \partial \Omega_t,$$

- u : velocity field,
- p: pressure field,
- **f**: body force field,
- Re: Reynolds number,
- Ω : bi- or three-dimensional domain,
- $[0, t^*]$: time interval.
- $\Omega_t = \Omega \times]0, t^*[$

First part : Steady Stokes problem (Re = 1)

The continuous problem is:

$$-\Delta \mathbf{u} + \nabla p = \mathbf{f} \qquad \text{dans } \Omega,$$
$$\mathbf{div } \mathbf{u} = 0 \qquad \text{dans } \Omega,$$
$$\mathbf{u} = 0 \qquad \text{sur } \partial \Omega.$$

The weak problem is : find $(\mathbf{u}, p) \in X \times M$ such that:

$$(\operatorname{grad} \mathbf{u}, \operatorname{grad} \mathbf{v}) - (p, \operatorname{div} \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in X,$$
$$-(q, \operatorname{div} \mathbf{u}) = 0 \qquad \forall q \in M.$$

- $X = H_0^1(\Omega)^d$,
- $M = L_0^2(\Omega),$
- \Longrightarrow Well posed problem

Spectral method for Stokes problem

The discret spaces are:

•
$$X_N = P_N^0(\Omega)^d$$
,

•
$$\mathcal{P}_{\mathcal{M}} = P_M \cap L_0^2(\Omega),$$

Find \mathbf{u}_N in X_N and p_N in $\mathcal{P}_{\mathcal{M}}$ such that:

$$a_N(\mathbf{u}_N, \mathbf{v}_N) + b_N(p_N, \mathbf{v}_N) = (\mathbf{f}, \mathbf{v})_N \ \forall \mathbf{v}_N \in X_N,$$

$$b_N(q_N, \mathbf{u}_N) = 0 \qquad \forall q_N \in \mathcal{P}_M.$$

where

$$a_N(\mathbf{u}_N, \mathbf{v}_N) = (\operatorname{grad} \mathbf{u}_N, \operatorname{grad} \mathbf{v})_N$$

 $b_N(q_N, \mathbf{v}_N) = -(q_N, \operatorname{div} \mathbf{v}_N)_N$

The discrete scalar product on $P_N(\Omega)$ is defined by

$$(u, v)_{N} = \begin{cases} \sum_{i,j=0}^{N} u(\xi_{i}, \xi_{j}) v(\xi_{i}, \xi_{j}) \rho_{i} \rho_{j}, \\ \sum_{i,j,k=0}^{N} u(\xi_{i}, \xi_{j}, \xi_{k}) v(\xi_{i}, \xi_{j}, \xi_{k}) \rho_{i} \rho_{j} \rho_{k} \end{cases}$$

What space for the pressure?

 $\mathcal{P}_{\mathcal{M}}$ must be shosen such that :

$$\inf_{q_N \in \mathcal{P}_{\mathcal{M}}} \sup_{\mathbf{v}_N \in X_N} \frac{b_N(\mathbf{v}_N, q_N)}{\|\mathbf{v}_N\|_X \|q_N\|_M} \ge C(N)$$

The spurious modes set

$$Z_{N,M} = \{q_M \in \mathcal{P}_M, b_N(q_M, \mathbf{v}_N) = 0, \forall \mathbf{v}_N \in X_N\}.$$

- The dimension of $Z_{N,N}$ is 7 for d=2 and 12N+3 for d=3 when M=N.
- The dimension of $Z_{N,M}$ is zero when

$$-M = N - 2$$

$$-\frac{M}{N} \le \tau < 1$$

- The inf-sup condition decays to zero like $N^{\frac{1-d}{2}}$ when M=N-2
- A uniform inf-sup condition of the family (X_N, \mathcal{P}_M) when $\frac{M}{N} \leq \tau < 1$

Numerical implementation

The equivalent matrix formulation of the Stokes problem is

$$\mathbf{A_N}\underline{\mathbf{U}}_N + \mathbf{D_M}\underline{p}_M = \underline{\mathbf{f}}_N$$
$$\mathbf{D_M}^T\underline{\mathbf{U}}_N = 0.$$

Where

- $\underline{\mathbf{U}}_N$ is a vector of unknowns for \mathbf{u}_N
- \underline{p}_M is a vector of unknowns for p_M
- $\underline{\mathbf{f}}_N$ is a vector of the data \mathbf{f}_N
- \mathbf{A}_N is the discrete Laplace operator
- \mathbf{D}_M is the discrete Gradient operator.

• \mathbf{u}_N is represented at the GLL nodes by :

$$u_N^r(x,y) = \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} u_N^r(\xi_i, \xi_j) h_i(x) h_j(y).$$

and

• p_M is represented at the G.L. nodes (or Internal GLL) by :

$$p_M(x,y) = \sum_{i=0}^{M} \sum_{\substack{j=0\\i+j\neq 0}}^{M} p_M(\zeta_i, \zeta_j) \ell_i(x) \ell_j(y).$$

grille

 $h_i \times h_j$

Uzawa algorithm

The pressure can be solved directly from

$$(\mathbf{D}_M^T \mathbf{A}_N^{-1} \mathbf{D}_M) \underline{p}_M = (\mathbf{D}_M^T \mathbf{A}_N^{-1} \mathbf{B}_N) \underline{\mathbf{f}}_N.$$

The Uzawa matrix

$$\mathbf{S}_{N,M} = (\mathbf{D}_M^T \mathbf{A}_N^{-1} \mathbf{D}_M)$$

is

- of dimension $(M+1)^d$,
- full, symmetric and positive definite,
- The condition number κ_{τ} and the inf-sup constant β_{τ} of $\mathbf{B}_{M}^{-1}\mathbf{S}_{N,M}$ verify:

$$\kappa_{\tau} = \frac{C}{\lambda_{\min}},$$

$$\beta_{\tau} \approx C\sqrt{\lambda_{\min}(\mathbf{B}_{M}^{-1}\mathbf{S}_{N,M})}.$$

• P.C.G with the mass matrix \mathbf{B}_M as a preconditionner is applied.

The $\beta_1(N)$ behaviour v.s N in 2 and 3 D

The $\beta_1(N)$ behaviour v.s N, for different values of τ in 2 and 3 D

The inf-sup constant (β_{τ}) behaviour with respect to τ .

Spectra of the Uzawa's operator in 2 and 3 dimensions

Some eigenvalues of Uzawa's spectra

Logarithm of the errors as a function of N

Logarithm of the errors as a function of N for L-shaped domain

The extact solution is:

$$\mathbf{u} = \begin{pmatrix} \pi e^{\pi y} \cos(\pi x) + \sin(\pi y) \\ \pi e^{\pi y} \sin(\pi x) + \cos(\pi x) \end{pmatrix}$$
$$p = \sin(\pi (x + y))$$

For different values of N and the number of iterations required by the iterative procedure to reach a given accuracy (here 10^{-8}) is

$oxed{N}$	20	25	30	35	40	45	45	50	61
2D	16	16	16	17	17	17	17	17	17
3D	23	24	24	25	26	26	26	26	26

The semi-discrete Stokes problem O(1)

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}^m}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}^{m+1} + \nabla p^{m+1} = \mathbf{f}^{m+1} \text{ in } \Omega,$$
$$\operatorname{div} \mathbf{u}^{m+1} = 0 \text{ in } \Omega,$$
$$\mathbf{u}^{m+1} = 0 \text{ on } \partial \Omega.$$

The Weak formulation reads as: find $(\mathbf{u}, p) \in (H_0^1(\Omega))^d \times L_0^2(\Omega)$ s. t.

$$A(\mathbf{u}^{m+1}, \mathbf{v}) + b(\mathbf{v}, p^{m+1}) = L(\mathbf{v}) \quad \forall \mathbf{v},$$
$$b(\mathbf{u}^{m+1}, q) = 0 \quad \forall q,$$

where

$$A(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \frac{\mathbf{u} - \mathbf{u}^m}{\Delta t} \mathbf{v} \, d\mathbf{x} + \frac{1}{Re} \int_{\Omega} \nabla \mathbf{u} \nabla \mathbf{v} \, d\mathbf{x}$$
$$b(\mathbf{v}, q) = -\int_{\Omega} q(\operatorname{div} \mathbf{v}) \, d\mathbf{x}$$
$$L(\mathbf{v}) = \int_{\Omega} \mathbf{f}^{m+1} \mathbf{v} \, d\mathbf{x}$$

Mixed $P_N \times P_M$ spectral element applied to the unsteady Stokes problem

For any real number $\tau \in]0,1[$ and any couple of integer (N,M) such that $\frac{M}{N} \leq \min(\tau,1-\frac{2}{N})$ we define

•
$$X_N = (\mathbb{P}_N(\Omega))^d (H_0^1(\Omega))^d$$
,

•
$$\mathcal{P}_M = I\!\!P_M(\Omega) \cap L_0^2(\Omega)$$
.

Find $\mathbf{u}_N \in X_N$ and $p_M \in \mathcal{P}_M$ s. t. :

$$A_N(\mathbf{u}_N, \mathbf{v}_N) + b_N(\mathbf{v}_N, p_M) = L_N(\mathbf{v}_N) \quad \forall \mathbf{v}_N,$$

$$b_N(\mathbf{u}_N, q_M) = 0 \quad \forall q_M,$$

where

$$A_N(\mathbf{u}, \mathbf{v}) = \left(\frac{\mathbf{u} - \mathbf{u}^m}{\Delta t}, \mathbf{v}\right)_N + \frac{1}{Re} \left(\nabla \mathbf{u}, \nabla \mathbf{v}\right)_N$$

$$b_N(\mathbf{v}, q) = -\left(q, \operatorname{div} \mathbf{v}\right)_N$$

$$L_N(\mathbf{v}) = \left(\mathbf{f}^{m+1}, \mathbf{v}\right)_N$$

Numerical implementation

We define:

•
$$X_N = (\mathbb{P}_N(\Omega))^d \cap (H_0^1(\Omega))^d$$
,

•
$$\mathcal{P}_M = I\!\!P_M(\Omega) \cap L_0^2(\Omega)$$
.

The equivalent matrix is

$$[\mathbf{B}_{N} + (\frac{\Delta t}{Re})\mathbf{A}_{N}]\underline{\mathbf{u}}_{N}^{m+1} + \Delta t \mathbf{D}_{M}\underline{p}_{M}^{m+1} = \mathbf{B}_{N}[\underline{\mathbf{u}}_{N}^{m} + \Delta t\underline{\mathbf{f}}_{N}^{m+1}],$$
$$-\mathbf{D}_{M}^{T}\underline{\mathbf{u}}_{N}^{m+1} = 0.$$

The Uzawa matrix is:

$$\mathbf{S}_{M,N} = \mathbf{D}_{M}^{T} [\mathbf{B}_{N} + (\frac{\Delta t}{Re}) \mathbf{A}_{N}]^{-1} \mathbf{D}_{M}$$

• The main difficulty of such an approach is that in practical situations, $\frac{\Delta t}{Re} \ll 1$, so that the matrix is ill conditioned.

The exact solution is:

$$u(x,y) = \sin(x+5t) \times \sin(y+5t),$$

$$v(x,y) = \cos(x+5t) \times \cos(y+5t),$$

$$p(x,y) = \sin(x+y+5t).$$

For different values of N and the number of iterations required by the iterative procedure to reach a given accuracy (here 10^{-8}) is

$$\tau = 1 \; Re = 10^3$$
, and $\Delta t = 0.001$.

Spectra of the Uzawa's operator for N = 16 and for different values of τ , in 2 dimensions. $Re = 10^3$, and $\Delta t = 0.001$.

Second part: Time splitting/spectral element method for the unsteady Stokes problem.

The semi-discrete Stokes problem

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}^m}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}^{m+1} + \nabla p^{m+1} = \mathbf{f}^{m+1} \text{ in } \Omega,$$
$$\operatorname{div} \mathbf{u}^{m+1} = 0 \quad \text{in } \Omega,$$
$$\mathbf{u}^{m+1} = 0 \quad \text{on } \partial \Omega.$$

- Chorin-Temam (68)
- Goda (78)
- Van Kan
- Kim Moin
- KIO
- ...

First order Goda scheme.

The semi-discrete Stokes problem

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}^m}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}^{m+1} + \nabla p^{m+1} = \mathbf{f}^{m+1} \text{ in } \Omega,$$
$$\operatorname{div} \mathbf{u}^{m+1} = 0 \quad \text{in } \Omega,$$
$$\mathbf{u}^{m+1} = 0 \quad \text{on } \partial \Omega.$$

Prediction-diffusion step:

$$\frac{\mathbf{u}_{*}^{m+1} - \mathbf{u}^{m}}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}_{*}^{m+1} + \nabla p^{m} = \mathbf{f}^{m+1} \quad \text{in } \Omega,$$
$$\mathbf{u}_{*}^{m+1} = 0. \quad \text{on } \partial \Omega.$$

Correction—projection step:

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}_{*}^{m+1}}{\Delta t} + \nabla (p^{m+1} - p^{m}) = 0. \qquad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{u}^{m+1} = 0 \qquad \text{in } \Omega,$$

$$\mathbf{u}^{m+1}.\mathbf{n} = 0 \qquad \text{on } \partial \Omega.$$

First order (N+1) New Goda scheme.

Prediction-diffusion step:

$$\frac{\mathbf{u}_{*}^{m+1} - \mathbf{u}^{m}}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}_{*}^{m+1} + \nabla p^{m} = \mathbf{f}^{m+1} \quad \text{in } \Omega,$$
$$\mathbf{u}_{*}^{m+1} = 0. \quad \text{on } \partial \Omega.$$

Correction—projection step:

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}_{*}^{m+1}}{\Delta t} + \nabla \psi = 0. \qquad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{u}^{m+1} = 0 \qquad \text{in } \Omega,$$

$$\mathbf{u}^{m+1}.\mathbf{n} = 0 \qquad \text{on } \partial \Omega.$$

and

$$p^{m+1} = \psi + p^m - \frac{1}{Re} \operatorname{div} \mathbf{u}_*^{m+1}$$

Why
$$p^{m+1} = \psi + p^m - \frac{1}{Re} \text{div } \mathbf{u}_*^{m+1}$$
?.

The projection step is:

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}_{*}^{m+1}}{\Delta t} + \nabla \psi = 0. \quad \text{in } \Omega,$$

$$\operatorname{div} \mathbf{u}^{m+1} = 0 \quad \text{in } \Omega,$$

$$\mathbf{u}^{m+1}.\mathbf{n} = 0 \quad \text{on } \partial \Omega.$$

and

$$\mathbf{u}^{m+1}.\tau = -\Delta t \frac{\partial \psi}{\partial \tau}$$
 on $\partial \Omega$.

The equivalent problem on the pressure is:

$$\Delta \psi = rac{\mathrm{div} \ \mathbf{u}_*^{m+1}}{\Delta t} \qquad ext{in } \Omega,$$
 $rac{\partial \psi}{\partial \mathbf{n}} = 0 \qquad \qquad ext{on } \partial \Omega.$

Some remarks (suite).

The Predicted velocity can be read us:

$$\mathbf{u}_{*}^{m+1} = \mathbf{u}^{m+1} + \Delta t \nabla \psi,$$
and
$$\frac{1}{Re} \Delta \mathbf{u}_{*}^{m+1} = \frac{1}{Re} \Delta \mathbf{u}^{m+1} + \frac{1}{Re} \Delta t \Delta \nabla \psi,$$

Then the Goda predicted step becomes:

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}^m}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}^{m+1} + \nabla (\psi + p^m - \frac{1}{Re} \Delta t \Delta \psi) = \mathbf{f}$$

$$\operatorname{div} \mathbf{u}^{m+1} = 0$$

$$\mathbf{u}^{m+1} \cdot \mathbf{n} = 0, \qquad \mathbf{u}^{m+1} \cdot \tau = -\Delta t \frac{\partial \psi}{\partial \tau}.$$

Using now:

$$\Delta t \ \Delta \psi = \text{div } \mathbf{u}_*^{m+1} \quad \text{in } \Omega,$$

$$\frac{\partial \psi}{\partial \mathbf{n}} = 0 \quad \text{on } \partial \Omega.$$

Some remarks (suite).

$$\frac{\mathbf{u}^{m+1} - \mathbf{u}^m}{\Delta t} - \frac{1}{Re} \Delta \mathbf{u}^{m+1} +$$

$$\nabla (\psi + p^m - \frac{1}{Re} \operatorname{div} \mathbf{u}_*^{m+1}) = \mathbf{f}$$

$$\operatorname{div} \mathbf{u}^{m+1} = 0 \qquad \text{in } \Omega,$$

$$\mathbf{u}^{m+1} = 0 \qquad \text{on } \partial \Omega.$$

Equivalence between semi-descret Stokes problem and Goda Scheme is ensured because

$$p^{m+1} := \psi + p^m - \frac{1}{Re} \text{div } \mathbf{u}_*^{m+1}$$

How to solve the projection step?

The problem to solve can be written as a Darcy problem :

$$\mathbf{u} + \operatorname{grad} p = \mathbf{f} \quad \text{in} \quad \Omega,$$

$$\operatorname{div} \mathbf{u} = 0 \quad \text{on} \quad \Omega,$$

$$\mathbf{u} \cdot \mathbf{n} = 0 \quad \text{on} \quad \partial \Omega.$$

Poisson-Neumann formulation: find
$$(\mathbf{u}, p)$$
 in $L^2(\Omega)^2 \times (H^1(\Omega) \cap L_0^2(\Omega))$ such that
$$(\operatorname{grad} p, \operatorname{grad} q) = (\mathbf{f}, \operatorname{grad} q), \forall q.$$

$$\mathbf{u} = \mathbf{f} - \operatorname{grad} p.$$

Mixed formulation: find
$$(\mathbf{u}, p)$$
 in $H_0(\operatorname{div}, \Omega) \times L_0^2(\Omega)$ such that
$$(\mathbf{u}, \mathbf{v}) - (p, \operatorname{div} \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \ \forall \mathbf{v} \in H_0(\operatorname{div}, \Omega),$$
$$-(q, \operatorname{div} \mathbf{u}) = 0 \qquad \forall q \in L_0^2(\Omega).$$

Non stable Spectral element for the projection step

Discrete Poisson-Neumann formulation (PN)

•
$$X_N = (P_N(\Omega))^2$$

•
$$M_N = P_N(\Omega) \cap L_0^2(\Omega)$$

Find (\mathbf{u}_N, p_N) in $X_N \times M_N$ such that:

$$(\operatorname{grad} p_N, \operatorname{grad} q_N)_N = (\mathbf{f}_N, \operatorname{grad} q_N), \forall q_N \in M_N$$

$$\mathbf{u}_N = \mathbf{f}_N - \operatorname{grad} p_N.$$

Mixed formulation (FM1)

- $X_N = (P_N(\Omega))^2 \cap H_0(\operatorname{div}, \Omega)$
- $M_N = P_N(\Omega) \cap L_0^2(\Omega) \setminus \text{ spurious modes.}$

Find (\mathbf{u}_N, p_N) in $X_N \times M_N$ such that:

$$(\mathbf{u}_N, \mathbf{v}_N)_N - (p_N, \operatorname{div} \mathbf{v}_N) = (\mathbf{f}_N, \mathbf{v}_N)_N \ \forall \mathbf{v}_N,$$

 $-(q_N, \operatorname{div} \mathbf{u}_N) = 0 \ \forall q_N.$

 \log_{10} of the errors as a function of \log_{10} of Δt

 \log_{10} of the errors as a function of \log_{10} of Δt

Stable spectral element for the projection step:

Discrete Poisson-Neumann formulation (PN)

•
$$X_N = (P_N(\Omega))^2$$

•
$$M_N = P_{N-2}(\Omega) \cap L_0^2(\Omega)$$

Find (\mathbf{u}_N, p_N) in $X_N \times M_N$ such that:

$$(\operatorname{grad} p_N, \operatorname{grad} q_N)_N = (\mathbf{f}_N, \operatorname{grad} q_N), \forall q_N \in M_N$$

$$\mathbf{u}_N = \mathbf{f}_N - \operatorname{grad} p_N.$$

Mixed formulation (FM1)

•
$$X_N = (P_N(\Omega))^2 \cap H_0(\operatorname{div}, \Omega)$$

•
$$M_N = P_{N-2}(\Omega) \cap L_0^2(\Omega)$$

Find (\mathbf{u}_N, p_N) in $X_N \times M_N$ such that:

$$(\mathbf{u}_N, \mathbf{v}_N)_N - (p_N, \operatorname{div} \mathbf{v}_N) = (\mathbf{f}_N, \mathbf{v}_N)_N \ \forall \mathbf{v}_N,$$

 $-(q_N, \operatorname{div} \mathbf{u}_N) = 0 \qquad \forall q_N.$

A Stokes spectral element for the projection step (FM2)

We consider the algebraic system:

$$[\mathbf{B}_{N} + (\frac{\Delta t}{Re})\mathbf{A}_{N}]\underline{\mathbf{u}}_{N}^{m+1} + \Delta t \mathbf{D}_{M} \underline{p}_{M}^{m+1} = \mathbf{B}_{N}[\underline{\mathbf{u}}_{N}^{m} + \Delta t \underline{\mathbf{f}}_{N}^{m+1}],$$
$$-\mathbf{D}_{M}^{T}\underline{\mathbf{u}}_{N}^{m+1} = 0.$$

Than the projection step becomes:

$$\mathbf{B}_{N} \left(\underline{\mathbf{u}}_{N}^{m+1} - \underline{\mathbf{u}}_{N}^{*} \right) + \Delta t \mathbf{D}_{M} \underline{\Psi} = 0.$$
$$-\mathbf{D}_{M}^{T} \underline{\mathbf{u}}_{N}^{m+1} = 0.$$

Wich is a stable discretisation of the problem : find (\mathbf{u}, p) in $H_0^1(\Omega)^2 \times L_0^2(\Omega)$ such that

$$(\mathbf{u}, \mathbf{v}) - (p, \operatorname{div} \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \ \forall \mathbf{v} \in H_0^1(\Omega)^2,$$
$$-(q, \operatorname{div} \mathbf{u}) = 0 \qquad \forall q \in L_0^2(\Omega).$$

 \log_{10} of the errors as a function of \log_{10} of Δt

 \log_{10} of the errors as a function of \log_{10} of Δt

 \log_{10} of the errors as a function of \log_{10} of Δt

