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The time-dependent Stokes problem

ou 1
E—EAu—i—gradp =f 4,

diva =0 Q,
u =20 0€,
u : velocity field,
p : pressure field,
f : body force field,
Re : Reynolds number,

() : bi- or three-dimensional domain,

[0,%*] : time interval.

Q, = QOx]0, t*]




First part : Steady Stokes problem (Re

The continuous problem is :
—Au+Vp =f
divu =0

u =20

The weak problem is : find (u

that:
(grad u, grad v) — (p, div v)
—(q, div u)
o X =Hy(Q)°,
o M = Lj(Q),

—> Well posed problem

dans (2,
dans (2,
sur 0f).

,p) € X x M such

= (f,v) VvelX,
=0 Vg e M.




Spectral method for Stokes problem

The discret spaces are :

o XN = P](\)f(ﬂ)da

o PM = Py ﬂL(Q)(Q),

Find uy in Xy and py in P such that:

any(uy,vy) = (grad uy, grad v)y
bn(gn,vN) = —(gn,div vN)N

The discrete scalar product on Py (€2) is defined

(N

1,7=0

(&, &5, 8)v(&5 &5, Ek) Pipi PR




What space for the pressure ?

P must be shosen such that :

inf  sup bn (v, an) > C(N)

aN€PMvyexy |[VNIIxllan]lar —

The spurious modes set

Zn.m =19 € Pv, by(gu, vn) =0,Vvy € Xn}.

e The dimension of Zy  is 7 for d = 2 and
12N + 3 for d = 3 when M = N.

e The dimension of Zy js is zero when

~ M=N-2

M
_W§T<]‘

e The inf-sup condition decays to zero like
1—

—dwhenM:N—2

e A uniform inf-sup condition of the family

(Xn,Pun) when 242 <7<1




Numerical implementation

The equivalent matrix formulation of the Stokes

problem is

ANHN ‘|‘DMZ_9M :iN
Dy’ Uy =0.

Where
U is a vector of unknowns for uy
p,, 1s a vector of unknowns for p,
f is a vector of the data f

Ay is the discrete Laplace operator

D, is the discrete Gradient operator.




e uy is represented at the GLL nodes by :

—1N-1

Z ZUN g’é?fj ( )

1 =1 j7=1

and

e pys is represented at the G.L. nodes (or Internal
GLL) by :

Z P (Giy )i ()45 (y).

1=0 J
0




Uzawa algorithm

The pressure can be solved directly from

(D3 Ay Du)p

= (DAL By

The Uzawa matrix

Sy = (D Ay'Du)

of dimension (M + 1)¢,
full, symmetric and positive definite,

The condition number x, and the inf-sup

constant 3, of B]T/}S N, verify :

C

’
)\min

67‘ ~ C\/)\min (B]T;SN,M)-

Ky =

P.C.G with the mass matrix By, as a
preconditionner is applied.
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The B1(N) behaviour v.s N in 2 and 3 D
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The 81 (V) behaviour v.s IV,

for different values of 7 in 2 and 3 D
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eigenvalues
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Spectra of the Uzawa’s operator in 2 and 3 dimensions
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Some eigenvalues of Uzawa’s spectra
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log(error)

O0—©0 velocity
E— pressure

log(erreur)

Logarithm of the errors as a function of [V




Logarithm of the errors as a function of /N for L-shaped domai




The extact solution is :

we™ cos(mx) + sin(my)
u = ,
we™Y sin(mx) + cos(mx)

p = sin(r(z +y))

For different values of NV and the number of
iterations required by the iterative procedure to

reach a given accuracy (here 107%) is

40 |45 (45

17 |17 |17

26 (26 |26




The semi-discrete Stokes problem O(1)

1
_ R_AHM—I—I i Vp’m—l—l _ fm—|—1 in Q7
e

divu™™ =0 inQ,

u”t =0 on 99.

The Weak formulation reads as : find
(u,p) € (Hg(2))? x L§(Q) s. t.

m

u—u 1
A = — [ VuV
(u,v) /Q , v dx + e/Q uVv dx

b(v,q) = —/Qq(div V) dx




Mixed Ppn X P, spectral element
applied to the unsteady Stokes problem

For any real number 7 €]0, 1| and any couple of
integer (N, M) such that 4+ < min(r,1 — %) we
define

e Xy = (IPnv(Q)4H D)),

o Py = Py (Q)NLEQ).

Find uy € Xy and pps € Pys s. t.

An(uny,vn) +bn(VN,pm) = Ln(Vvn)  Vvn,

by(un,qn) =0 Vaur,




Numerical implementation

We define :
e Xy = (IPy(Q)4N(H(Q))Y,
o Py = Py (Q)NLEQ).

The equivalent matrix is

At m m
By + (=)Anui™ + AtDM]jMJrl

R
By [ul + Atf7H ],

T ..m—+1
—Dj,uy

The Uzawa matrix is :

At
Sa,n =Dy By + (@)AN]_lDM

e The main difficulty of such an approach is that
in practical situations, % << 1, so that the

matrix is ill conditioned.




The exact solution is :
u(x,y) sin(z + 5t) x sin(y + 5t),
v(z,y) = cos(x + 5t) x cos(y + 5t),
p(x,y) = sin(z + y + 5t).

For different values of NV and the number of

iterations required by the iterative procedure to

reach a given accuracy (here 107%) is
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=1 Re = 103, and At = 0.001.
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Spectra of the Uzawa’s operator for N = 16
and for different values of 7, in 2 dimensions.
Re =103, and At = 0.001.




Second part : Time splitting/spectral element
method for the unsteady Stokes problem.

The semi-discrete Stokes problem

um™tl — g™ 1
N — EAum“ + Vpm Tt =fmtl i Q,

divu™™ =0 inQ,

u™tt =0 on 99.

Chorin-Temam (68)

Goda (78)
Van Kan
Kim Moin
KIO




First order Goda scheme.

The semi-discrete Stokes problem

m—+1 m

—u 1
— A m—+1 \V4 m+1 _ fm—i—l : Q7
At Re VP o

divu™* =0 in ,
on Of).

Prediction-diffusion step :

utt —um 1

At Re

Aul"tt + vp = £

m—+1 :O

u,

Correction—projection step :




First order (N+41) New Goda scheme.

Prediction-diffusion step :

—u™ 1

At Re

Aumt L vp™ =fmT in Q,

u”t =0o. on Of).

*

Correction—projection step :

m+1 uTn—|—1

A + V¢ =0.

u

div u™ !




The projection step is :

m-+1

—— +Vy =0.

—u
At

divu™™ =0 in €,

u"tn =0 on Of).

u"tl = —At2—¢ on Of).
T

The equivalent problem on the pressure is :

: m—+1
div u™* ,
in €,

At

oY B
In =0 on Of).

Ap =




Some remarks (suite).

The Predicted velocity can be read us :

u”tt =™t 4 AtV
1 1 1
and — Au”tt = —Aumtt 4 —

— AtA
Re 7 Re Re tAVY,

Then the Goda predicted step becomes :

1 1

Re

Au" T 4V (Yh+p™ —

AtAY) = f

divu™t! =0

u"thr = —Atg—?f.

Using now :
At Ay = div u™ ! in ©,

0_¢ =0 on Of).
on




Some remarks (suite).

1
. A m—+1
Re " i

1
V(i +p™ — Ediv u"th) =f

divu™t =0 in Q,

on Of).

Equivalence between semi-descret Stokes problem
and Goda Scheme is ensured because

1
pm = 4 p™ — —div u™ !
Re

*




How to solve the projection step 7

The problem to solve can be written as a Darcy

problem :
u+gradp =f in €,
divu =0 on £,

u.n =0 on 0N.

Poisson-Neumann formulation : find (u,p) in
L?*(Q)? x (H'(Q) N L3(£2)) such that

(erad p ,grad ¢ ) = (f ,grad q ), Vq.
u =f — grad p.

Mixed formulation : find (u,p) in
Hy(div , Q) x L3() such that

(u,v) — (p,divv) = (f,v) Vv € Hy(div , ),
=0 Vq € L3 (9.

—(q, div u)




Non stable Spectral element for the projection step

Discrete Poisson-Neumann formulation (PN)
o Xy = (Py(Q))°
o My = Pn(Q)NL3Q)
Find (uy,pn) in Xy X My such that:
(grad py ,grad qn )y = (fn ,grad qn ), Van € My
uy = fy — grad pn.

Mixed formulation (FM1)

o Xy = (Pn())° N Hy(div , Q)

o My = Pn(Q) N L3(Q)\ spurious modes.

Find (uy,pn) in Xy X My such that:
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Stable spectral element for the projection step :

Discrete Poisson-Neumann formulation (PN)
o Xy = (Pn(Q))’
o My = PN_Q(Q) M Lg(Q)

Find (uy,pn) in Xy x My such that:
(erad py ,grad qn )y = (fn ,grad qn ),Vgn € My
uy = fy — grad pn.

Mixed formulation (FM1)

o Xy = (Pn(Q))” N Hy(div , Q)

[ MN = PN_Q(Q) M L%(Q)

Find (uy,pn) in Xy X My such that:







A Stokes spectral element for
the projection step (FM2)

We consider the algebraic system :

At
By + (R—)AN]gx“ + AtDypl ! =
By [uf + AtfR T,

T .. m+1
—Djuy

Than the projection step becomes :

By (upt™ —uly) + AtDy ¥ = 0.

T ..m+1

Wich is a stable discretisation of the problem :
find (u,p) in H}(Q)? x L3(Q) such that
(u,v) = (p,divv) = (f,v) Vv e Hy(Q)%
—(¢,divu) =0 Vq € LZ(9).
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Goda (2) Goda (2)
Velocity Pressure
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Pression (2)

GC—©GodaFM. 1
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MERCI et bonne suite




