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Figure: Entries with the keyword “discontinuous Galerkin” in MathSciNet
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Introduction II

(a) SUPG (4800) (b) SUPG (13300)

(c) dG-P3 (5120) (d) dG-P3 (13520)

Figure: Accuracy in advective problems [Di Pietro et al., 2006]
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Introduction III

Figure: Compressible flow on Onera M6 wing profile [Bassi, Crivellini, DP, & Rebay, 2006]
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Introduction IV

Figure: High-order accuracy in convection-dominated flows (3d lid-driven cavity,
[Botti and Di Pietro, 2011])
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Introduction V

Figure: Transient incompressible flows, Turek cylinder [Bassi, Crivellini, DP, & Rebay, 2007]
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Introduction VI

(a) Lift coefficient (b) Drag coefficient

Figure: High-order in space-time
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Introduction VII
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Figure: Degenerate advection-diffusion [Di Pietro et al., 2008]
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Introduction VIII

(a) 15 el. (b) 63 el. (c) 250 el. (d) 1024 el.

Figure: Adaptive derefinement [Bassi, Botti, Colombo, DP, Tesini, 2012]
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The origins: First-order PDEs

[Reed and Hill, 1973], dG for steady neutron transport
[Lesaint and Raviart, 1974], first error estimate
[Johnson and Pitkäranta, 1986], improved estimate
[Cockburn and Shu, 1989], explicit Runge–Kutta dG methods
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The origins: Second-order PDES

[Nitsche, 1971], boundary penalty methods
[Babuška and Zlámal, 1973], Interior Penalty for bcs
[Arnold, 1982], Symmetric Interior Penalty (SIP) dG method
[Bassi and Rebay, 1997], compressible Navier–Stokes equations
[Arnold et al., 2002], unified analysis

12 / 160



Part I

Basic concepts
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Outline

1 Broken spaces and operators

2 Abstract nonconforming error analysis

3 Mesh regularity
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Faces, averages, and jumps I

Definition (Mesh)

A mesh T of Ω is a finite collection of disjoint open polyhedra T = {T}
s.t.

⋃
T∈T T = Ω. Each T ∈ T is called a mesh element.

Definition (Element diameter, meshsize)

Let T be a mesh of Ω. For all T ∈ T , hT denotes the diameter T , and
the meshsize is defined as

h := max
T∈T

hT .

We use the notation Th for a mesh T with meshsize h.
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Faces, averages, and jumps II

Figure: Example of mesh
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Faces, averages, and jumps III

Definition (Mesh faces)

A closed subset F of Ω is a mesh face if |F |d−1 > 0 and
either ∃T1, T2 ∈ Th, T1 6= T2, s.t. F = ∂T1 ∩ ∂T2 (interface);
or ∃T ∈ Th s.t. F = ∂T ∩ ∂Ω (boundary face).

Figure: Examples of interfaces
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Faces, averages, and jumps IV

Interfaces are collected in F ih, boundary faces in Fbh, and

Fh := F ih ∪ Fbh.

For all T ∈ Th we let

FT := {F ∈ Fh | F ⊂ ∂T} ,

and we set
N∂ := max

T∈Th
card(FT )

Symmetrically, for all F ∈ Fh, we let

TF := {T ∈ Th | F ⊂ ∂T}
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Faces, averages, and jumps V

T1 T2

F

nF

Definition (Interface averages and jumps)

Assume v : Ω→ R smooth enough to admit a possibly two-valued trace
on all interfaces. Then, for all F ∈ F ih we let

{{v}} :=
1

2
(v|T1

+ v|T2
), JvK := v|T1

− v|T2
.

For all F ∈ Fbh with F ⊂ ∂T we conventionally set {{v}} = JvK = v|T .
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Broken polynomial spaces I

k d = 1 d = 2 d = 3

0 1 1 1
1 2 3 4
2 3 6 10
3 4 10 20

Table: Dimension of Pk
d for 1 ≤ d ≤ 3 and 0 ≤ k ≤ 3

Discontinuous Galerkin methods hinge on broken polynomial spaces,

Pkd(Th) :=
{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Pkd(T )

}
Hence, the number of DOFs is

dim(Pkd(Th)) = card(Th)× card(Pkd) = card(Th)× (k + d)!

k!d!
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Broken polynomial spaces II

Figure: Orthonormal polynomial basis functions for an L-shaped element

21 / 160



Lebesgue spaces

With v : Ω→ R Lebesgue measurable and 1 ≤ p ≤ +∞, we set

‖v‖Lp(Ω) :=

(∫
Ω

|v|p
)1/p

∀1 ≤ p < +∞,

and, for p = +∞,

‖v‖L∞(Ω) := inf{M > 0 | |v(x)| ≤M a.e. x ∈ Ω}

In either case, we define the Lebesgue space

Lp(Ω) := {v Lebesgue measurable | ‖v‖Lp(Ω) < +∞}

Equipped with ‖·‖Lp(Ω), Lp(Ω) is a Banach space for all p
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Sobolev spaces I

Let ∂i denote the distributional partial derivative with respect to xi
For a d-uple α = (α1, . . . , αd) ∈ Nd we note

∂αv := ∂α1
1 . . . ∂αd

d v

For an integer m ≥ 0 we define the Sobolev space

Hm(Ω) =
{
v ∈ L2(Ω) | ∀α ∈ Amd , ∂αv ∈ L2(Ω)

}
,

with Amd :=
{
α ∈ Nd | |α|`1 ≤ m

}
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Sobolev spaces II

Hm(Ω) is a Hilbert space when equipped with the scalar product

(v, w)Hm(Ω) :=
∑
α∈Am

d

(∂αv, ∂αw)L2(Ω),

The corresponding norm is

‖v‖Hm(Ω) :=

 ∑
α∈Am

d

‖∂αv‖2L2(Ω)

 1
2

,

The case m = 1 will be of particular importance in what follows
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Broken Sobolev spaces and broken gradient I

We formulate local regularity in terms of broken Sobolev spaces

Hm(Th) :=
{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Hm(T )

}
Clearly, Hm(Ω) ⊂ Hm(Th)

We record for future use that

functions in H1(Th) have trace in L2(∂T ) for all T ∈ Th
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Broken Sobolev spaces and broken gradient II

Definition (Broken gradient)

The broken gradient ∇h : H1(Th)→ [L2(Ω)]d is defined s.t.

∀v ∈ H1(Th), (∇hv)|T := ∇(v|T ) ∀T ∈ Th.

Lemma (Characterization of H1(Ω))

A function v ∈ H1(Th) belongs to H1(Ω) if and only if

JvK = 0 ∀F ∈ F ih.

Moreover it holds, for all v ∈ H1(Ω),

∇hv = ∇v in [L2(Ω)]d.
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Abstract nonconforming error analysis I

Let V be a function space s.t., with dense and continuous injections,

V ↪→ L2(Ω) ≡ L2(Ω)′ ↪→ V ′

Let a ∈ L(V×V,R) and f ∈ V ′

We consider the model linear problem

Find u ∈ V s.t. a(u,w) = 〈f, w〉V ′,V for all w ∈ V (Π)
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Abstract nonconforming error analysis II

Fix k ≥ 0 and set Vh := Pkd(Th). In general, Vh is nonconforming:

Vh 6⊂ V

With ah ∈ L(Vh×Vh,R), lh ∈ L(Vh,R), a dG method for (Π) reads

Find uh ∈ Vh s.t. ah(uh, wh) = lh(wh) for all wh ∈ Vh (Πh)

When is (Πh) a good approximation of (Π)?
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Abstract nonconforming error analysis III

Let |||·||| and |||·|||∗ denote two norms on a subspace V∗h of V + Vh

We formulate conditions to bound the error in the stability norm

|||u− uh|||

by the best approximation error in Vh in the boundedness norm

inf
yh∈Vh

|||u− yh|||∗

In the analysis of dG methods we often have

|||·||| 6= |||·|||∗

29 / 160



Abstract nonconforming error analysis IV

Definition (Discrete stability)

We say that the discrete bilinear form ah enjoys discrete stability on Vh if
there is Csta > 0 independent of h s.t.

∀vh ∈ Vh, Csta|||vh||| ≤ sup
wh∈Vh\{0}

ah(vh, wh)

|||wh|||
, (inf-sup)

or, equivalently,

Csta ≤ inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

ah(vh, wh)

|||vh||||||wh|||
.

Stability answers the question: Can we solve the discrete problem?
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Abstract nonconforming error analysis V

A sufficient condition for discrete stability is coercivity,

∀vh ∈ Vh, Csta|||vh|||2 ≤ ah(vh, vh)

Discrete coercivity implies (inf-sup) since, for all vh ∈ Vh \ {0},

Csta|||vh||| ≤
ah(vh, vh)

|||vh|||
≤ sup
wh∈Vh\{0}

ah(vh, wh)

|||wh|||
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Abstract nonconforming error analysis VI

For consistency we need to plug u into the first argument of ah
However, in most cases ah cannot be extended to V × Vh

Assumption (Regularity of the exact solution)

We assume that there is V∗ ⊂ V s.t.
ah can be extended to V∗ × Vh and
the exact solution u is s.t. u ∈ V∗.
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Abstract nonconforming error analysis VII

Definition (Consistency)

The discrete problem (Πh) is consistent if for the exact solution u ∈ V∗,

ah(u,wh) = lh(wh) ∀wh ∈ Vh. (cons.)

When consistency holds, uh is the ah-orthogonal projection of u

ah(u− uh, wh) = 0 ∀wh ∈ Vh.

Consistency answers the question: Is the discrete problem representa-
tive of the continuous one?
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Abstract nonconforming error analysis VIII

If u ∈ V∗, the error satisfies u− uh ∈ V∗h with

V∗h := V∗ + Vh

We introduce a second norm |||·|||∗ s.t.

∀v ∈ V∗h, |||v||| ≤ |||v|||∗

Definition (Boundedness)

The discrete bilinear form ah is bounded in V∗h × Vh if there is Cbnd

independent of h s.t.

∀(v, wh) ∈ V∗h × Vh, |ah(v, wh)| ≤ Cbnd|||v|||∗|||wh|||.

34 / 160



Abstract nonconforming error analysis IX

Theorem (Abstract error estimate)

Let u solve (Π) and assume u ∈ V∗. Then, assuming discrete stability,
consistency, and boundedness, it holds

|||u− uh||| ≤
(

1 +
Cbnd

Csta

)
inf

yh∈Vh

|||u− yh|||∗. (est.)
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Abstract nonconforming error analysis X

inf
yh∈Vh

|||u− yh||| ≤ |||u− uh||| ≤ C inf
yh∈Vh

|||u− yh|||∗

Definition (Optimal, quasi-optimal, and suboptimal error estimate)

We say that the above error estimate is
optimal if |||·||| = |||·|||∗
quasi-optimal if |||·||| 6= |||·|||∗, but the lower and upper bounds
converge, for smooth u, at the same convergence rate as h→ 0

suboptimal if the upper bound converges more slowly
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Abstract nonconforming error analysis XI

Proof.

Let yh ∈ Vh. Owing to discrete stability and consistency,

|||uh − yh||| ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)

|||wh|||

= C−1
sta sup

wh∈Vh\{0}

ah(u− yh, wh) +(((((((
ah(uh − u,wh)

|||wh|||

Hence, using boundedness,

|||uh − yh||| ≤ C−1
staCbnd|||u− yh|||∗

Estimate (est.) then results from the triangle inequality, the fact
that |||u− yh||| ≤ |||u− yh|||∗, and that yh is arbitrary in Vh
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Roadmap for the design of dG methods

1 Extend the continuous bilinear form to V∗h × Vh by replacing

∇ ← ∇h

2 Check for stability
Remove bothering terms in a consistent way
If necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved

4 Prove boundedness by appropriately selecting |||·|||∗
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Mesh regularity I

To prove discrete stability, consistency, and boundedness we need
basic results such as trace and inverse inequalities

For convergence, Vh must enjoy approximation properties

inf
yh∈Vh

|||u− yh|||∗ ≤ Cuhl

This requires regularity assumptions on the mesh sequence

TH := (Th)h∈H
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Mesh regularity II

Definition (Shape and contact regularity)

The mesh sequence TH is shape- and contact-regular if for all h ∈ H, Th
admits a matching simplicial submesh Sh s.t.

(i) There is a %1 > 0, independent of h, s.t.

∀T ′ ∈ Sh, %1hT ′ ≤ rT ′ ,

with rT ′ radius of the largest ball inscribed in T ′;
(ii) There is %2 > 0, independent of h s.t.

∀T ∈ Th, ∀T ′ ∈ ST , %2hT ≤ hT ′ .

If Th is itself matching and simplicial, the only requirement is shape-
regularity with parameter %1 > 0 independent of h.
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Mesh regularity III

Figure: Mesh Th and matching simplicial submesh Sh
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Mesh regularity IV

We wish to have optimal approximation properties for

(Pkd(Th))h∈H,

Since we consider continuous problems posed in a space V s.t.

V ↪→ L2(Ω) ≡ L2(Ω)′ ↪→ V ′,

it is natural to focus on the L2-orthogonal projector πkh s.t.

∀v ∈ L2(Ω), (πkhv − v, wh)L2(Ω) = 0 ∀wh ∈ Pkd(Th)

This also allows to deal naturally with polyhedral elements
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Mesh regularity V

Lemma (Optimal polynomial approximation [Dupont and Scott, 1980])
Let TH denote a shape- and contact-regular mesh sequence. Then, for all
h ∈ H, all T ∈ Th, and all polynomial degree k, it holds

∀s ∈ {0, . . . , k + 1}, ∀m ∈ {0, . . . , s}, ∀v ∈ Hs(T ),

|v − πkhv|Hm(T ) ≤ Capph
s−m
T |v|Hs(T ),

where Capp is independent of both T and h.
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Part II

Scalar first-order PDES
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Outline

4 The continuous setting

5 Centered fluxes

6 Upwind fluxes
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The continuous problem I

We consider the following steady advection-reaction problem:

β·∇u+ µu = f in Ω,

u = 0 on ∂Ω−,

where f ∈ L2(Ω) and

∂Ω± := {x ∈ ∂Ω | ± β(x)·n(x) > 0}

We further assume

µ ∈ L∞(Ω), β ∈ [Lip(Ω)]d, Λ := µ− 1

2
∇·β ≥ µ0

As a starting point, we need a suitable weak formulation
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Traces and continuous IBP formula I

The natural space to look for the solution is the graph space

V :=
{
v ∈ L2(Ω) | β·∇v ∈ L2(Ω)

}
V is a Hilbert space when equipped with the inner product

(v, w)V := (v, w)L2(Ω) + (β·∇v, β·∇w)L2(Ω)

To deal with BCs, we study the traces of functions in V in the space

L2(|β·n|; ∂Ω) :=

{
v is measurable on ∂Ω

∣∣∣ ∫
∂Ω

|β·n|v2 <∞
}
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Traces and continuous IBP formula II

Assumption (Inflow/ouflow separation)

We assume henceforth inflow/outflow separation,

dist(∂Ω−, ∂Ω+) := min
(x,y)∈∂Ω−×∂Ω+

|x− y| > 0.

Ω

x1

x2

β

Figure: Counter-example for inflow/outflow separation
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Traces and continuous IBP formula III

Lemma (Traces and integration by parts)

In the above framework, the trace operator

γ : C0(Ω) 3 v 7−→ γ(v) := v|∂Ω ∈ L2(|β·n|; ∂Ω)

extends continuously to V , i.e., there is Cγ s.t., for all v ∈ V ,

‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V .

Moreover, the following IBP formula holds true: For all v, w ∈ V ,∫
Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw] =

∫
∂Ω

(β·n)γ(v)γ(w).
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Weak formulation and well-posedness I

We introduce the following bilinear form:

a(v, w) :=

∫
Ω

µvw +

∫
Ω

(β·∇v)w +

∫
∂Ω

(β·n)	vw,

where
x⊕ :=

1

2
(|x|+ x) , x	 :=

1

2
(|x| − x)

For all v, w ∈ V , the Cauchy–Schwarz inequality together with the
bound ‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V yield boundedness for a

|a(v, w)| ≤
(

1 + ‖µ‖2L∞(Ω)

) 1
2 ‖v‖V ‖w‖L2(Ω) + C2

γ‖v‖V ‖w‖V
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Weak formulation and well-posedness II

Lemma (L2-coercivity of a)

The bilinear form a is L2-coercive on V , namely,

∀v ∈ V, a(v, v) ≥ µ0‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2.
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Weak formulation and well-posedness III

a(v, w) :=

∫
Ω

µvw +

∫
Ω

(β·∇v)w +

∫
∂Ω

(β·n)	vw,

Proof.
For all v ∈ V , IBP yields

a(v, v) =

∫
Ω

(
µ− 1

2
∇·β

)
v2 +

∫
∂Ω

1

2
(β·n)v2 +

∫
∂Ω

(β·n)	v2

=

∫
Ω

Λv2 +

∫
∂Ω

1

2
|β·n|v2

≥ µ0‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2,

where we have used the assumption Λ ≥ µ0 > 0 to conclude.
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Weak formulation and well-posedness IV

Find u ∈ V s.t. a(u,w) =

∫
Ω

fw for all w ∈ V (Π)

Lemma (Well-posedness and characterization of (Π))

Problem (Π) is well-posed and its solution u ∈ V is s.t.

β·∇u+ µu = f a.e. in Ω,

u = 0 a.e. in ∂Ω−.

Weak formulation with weakly enforced homogeneous inflow BCs
Extensions possible to inhomogeneous BCs and systems
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Roadmap for the design of dG methods

1 Extend the continuous bilinear form to V∗h × Vh by replacing

∇ ← ∇h

2 Check for stability
Remove bothering terms in a consistent way
If necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved

4 Prove boundedness by appropriately selecting |||·|||∗
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Heuristic derivation I

Assumption (Regularity of exact solution and space V∗)

We assume that there is a partition PΩ = {Ωi}1≤i≤NΩ
of Ω into disjoint

polyhedra s.t.
u ∈ V∗ := V ∩H1(PΩ).

Additionally, we set
V∗h := V∗ + Vh.

Lemma (Jumps of u across interfaces)

If u ∈ V∗, then, for all F ∈ F ih,

(β·nF )JuKF (x) = 0 for a.e. x ∈ F .
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Heuristic derivation II

Let Vh := Pkd(Th), k ≥ 1

Our starting point is the (consistent) extension of a to V∗h × Vh,

a
(0)
h (v, wh) :=

∫
Ω

{
µvwh + (β·∇hv)wh

}
+

∫
∂Ω

(β·n)	vwh

We mimic L2-coercivity at the discrete level by introducing additional
consistent terms that vanish when we plug u into the first argument
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Heuristic derivation III

Element-by-element IBP yields, for all vh ∈ Vh,

a
(0)
h (vh, vh) =

∫
Ω

{
µv2

h + (β·∇hvh)vh

}
+

∫
∂Ω

(β·n)	v2
h

=

∫
Ω

µv2
h +

∑
T∈Th

∫
T

(β·∇vh)vh +

∫
∂Ω

(β·n)	v2
h

=

∫
Ω

µv2
h +

∑
T∈Th

∫
T

1

2
(β·∇v2

h) +

∫
∂Ω

(β·n)	v2
h

=

∫
Ω

Λv2
h +

∑
T∈Th

∫
∂T

1

2
(β·nT )v2

h +

∫
∂Ω

(β·n)	v2
h,

where we have used Λ := µ− 1
2∇·β

Let us focus on the boundary terms
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Heuristic derivation IV

T1 T2

F

nF

Using the continuity of (β·nF ) across all F ∈ F ih,∑
T∈Th

∫
∂T

1

2
(β·nT )v2

h =
∑
F∈Fi

h

∫
F

1

2
(β·nF )Jv2

hK +
∑
F∈Fb

h

∫
F

1

2
(β·n)v2

h

For all F ih 3 F = ∂T1 ∩ ∂T2, vi = vh|Ti
, i ∈ {1, 2}, it holds

1

2
Jv2
hK =

1

2
(v2

1 − v2
2) =

1

2
(v1 − v2)(v1 + v2) = JvhK{{vh}}
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Heuristic derivation V

As a result,

a
(0)
h (vh, vh) =

∫
Ω

Λv2
h +

∑
F∈Fi

h

∫
F

(β·nF )JvhK{{vh}}

+
∑
F∈Fb

h

∫
F

1

2
(β·n)v2

h +

∫
∂Ω

(β·n)	v2
h,

Combining the two rightmost terms, we arrive at

a
(0)
h (vh, vh) =

∫
Ω

Λv2
h +

∑
F∈Fi

h

∫
F

(β·nF )JvhK{{vh}} +

∫
∂Ω

1

2
|β·n|v2

h

The boxed term is nondefinite
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Heuristic derivation VI

A natural idea is to modify a(0)
h as follows:

acf
h (v, wh) :=

∫
Ω

{
µvwh + (β·∇hv)wh

}
+

∫
∂Ω

(β·n)	vwh

−
∑
F∈Fi

h

∫
F

(β·nF )JvK{{wh}}

The highlighted term is consistent since u ∈ V∗ implies

(β·nF )JuKF (x) = 0 for a.e. x ∈ F

Moreover, it ensures L2-coercivity since, this time,

acf
h (vh, vh) =

∫
Ω

Λv2
h +

∫
∂Ω

1

2
|β·n|v2

h ∀vh ∈ Vh
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Heuristic derivation VII

∫
Ω

{
µvhwh + (β·∇hvh)wh

}
,
∫
∂Ω

(β·n)	vhwh

∑
F∈Fi

h

∫
F

(β·nF )JvhK{{wh}}

Figure: Stencil of the different terms
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Heuristic derivation VIII

|||v|||2cf := τ−1
c ‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2, τc := {max(‖µ‖L∞(Ω), Lβ)}−1

Lemma (Consistency and discrete coercivity)

The discrete bilinear form acf
h satisfies the following properties:

(i) Consistency, i.e., assuming u ∈ V∗,

acf
h (u, vh) =

∫
Ω

fvh ∀vh ∈ Vh;

(ii) Coercivity on Vh with Csta := min(1, τcµ0),

∀vh ∈ Vh, acf
h (vh, vh) ≥ Csta|||vh|||2cf .
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Error estimate I

Lemma (Boundedness)

It holds

∀(v, wh) ∈ V∗h × Vh, acf
h (v, wh) ≤ Cbnd|||v|||cf,∗|||wh|||cf ,

with Cbnd independent of h and of µ and β, and with βc := ‖β‖[L∞(Ω)]d ,

|||v|||2cf,∗ := |||v|||2cf +
∑
T∈Th

τc‖β·∇v‖2L2(T ) +
∑
T∈Th

τcβ
2
ch
−1
T ‖v‖

2
L2(∂T ).
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Error estimate II

Find uh ∈ Vh s.t. acf
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh (Πcf
h )

Theorem (Error estimate)

Let u solve (Π) and let uh solve (Πcf
h ) with Vh = Pkd(Th), k ≥ 1. Then,

it holds,
|||u− uh|||cf ≤ C inf

yh∈Vh

|||u− yh|||cf,∗,

with C independent of h and depending on the data only via the factor

C−1
sta = {min(1, τcµ0)}−1.
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Error estimate III

Corollary (Convergence rate for smooth solutions)

Assume u ∈ Hk+1(Ω). Then, it holds

|||u− uh|||cf ≤ Cuhk,

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the
data only through the factor {min(1, τcµ0)}−1.

Proof.
It suffices to let yh = πkhu in the error estimate and use the
approximation properties of the sequence of discrete spaces (Vh)h∈H.
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Error estimate IV

This estimate is suboptimal by 1
2 power of h

Indeed, in the inequalities

inf
yh∈Vh

|||u− yh|||cf ≤ |||u− uh|||cf ≤ C inf
yh∈Vh

|||u− yh|||cf,∗,

the upper bound converges more slowly than the lower bound

Also bothering: no convergence for FV (k = 0)!

|||v|||2cf := τ−1
c ‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2,

|||v|||2cf,∗ := |||v|||2cf +
∑
T∈Th

τc‖β·∇v‖2L2(T ) +
∑
T∈Th

τcβ
2
ch
−1
T ‖v‖

2
L2(∂T ).
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Numerical fluxes I

acf
h (v, wh) :=

∫
Ω

{
µvwh + (β·∇hv)wh

}
+

∫
∂Ω

(β·n)	vwh

−
∑
F∈Fi

h

∫
F

(β·nF )JvK{{wh}}

Lemma (Equivalent expression for acf
h )

For all (v, wh) ∈ V∗h × Vh, it holds

acf
h (v, wh) =

∫
Ω

{
(µ−∇·β)vwh − v(β·∇hwh)

}
+

∫
∂Ω

(β·n)⊕vwh +
∑
F∈Fi

h

∫
F

(β·nF ){{v}}JwhK.
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Numerical fluxes II

IBP of the advective term leads to

acf
h (v, wh) =

∫
Ω

{
(µ−∇·β)vwh − v(β·∇hwh)

}
+
∑
T∈Th

∫
∂T

(β·nT )vwh +

∫
∂Ω

(β·n)	vwh

−
∑
F∈Fi

h

∫
F

(β·nF )JvK{{wh}}

Exploiting the continuity of β·nF we obtain∑
T∈Th

∫
∂T

(β·nT )vwh =
∑
F∈Fi

h

∫
F

(β·nF )JvwhK +
∑
F∈Fb

h

∫
F

(β·n)vwh
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Numerical fluxes III

To conclude we use the magic formula

JvwhK = v1w1 − v2w2

=
1

2
(v1 − v2)(w1 + w2) +

1

2
(v1 + v2)(w1 − w2)

= JvK{{wh}}+ {{v}}JwhK,

where vi := v|Ti and wi := wh|Ti for i ∈ {1, 2}
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Numerical fluxes IV

We now consider a point of view closer to finite volumes

Let T ∈ Th and ξ ∈ Pkd(T )

For a set S ⊂ Ω, denote by χS the characteristic function of S s.t.

χS(x) =

{
1 if x ∈ S,
0 otherwise

With the goal of setting vh = ξχT in (Πcf
h ) observe that

JξχT K = εT,F ξ with εT,F := nT ·nF
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Numerical fluxes V

acf
h (uh, vh) =

∫
Ω

{
(µ−∇·β)uhvh − uh(β·∇hvh)

}
+

∫
∂Ω

(β·n)⊕uhvh +
∑
F∈Fi

h

∫
F

(β·nF ){{uh}}JvhK.

Letting vh = ξχT in the alternative form for ah (cf. above) we infer

ah(uh, ξχT ) =

∫
T

{
(µ−∇·β)uhξ−uh(β·∇ξ)

}
+
∑
F∈FT

εT,F

∫
F
φF (uh)ξ =

∫
T
fξ,

where centered numerical flux φF (uh) given by

φF (uh) :=

{
(β·nF ){{uh}} if F ∈ F ih,
(β·n)⊕uh if F ∈ Fbh
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Numerical fluxes VI

For ξ|T ≡ 1 we recover the usual FV local conservation: ∀T ∈ Th,∫
T

(µ−∇·β)uh +
∑
F∈FT

∫
F

εT,FφF (uh) =

∫
T

f

We next modify the numerical flux to recover quasi-optimality
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Upwinding I

The error estimate for centered fluxes is suboptimal

This can be improved by tightening stability with a least-square
penalization of interface jumps

In terms of fluxes, this approach amounts to introducing upwind

As a side benefit, we can estimate the advective derivative error
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Upwinding II

We consider the new bilinear form

aupw
h (vh, wh) := acf

h (vh, wh) + sh(vh, wh),

where, for η > 0, we have introduced the stabilization bilinear form

sh(vh, wh) =
∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK

This term is consistent under the regularity assumption since

(β·nF )JuK = 0 ∀F ∈ F ih
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Upwinding III

More explicity, recalling the expression of acf
h ,

aupw
h (vh, wh) :=

∫
Ω

{
µvhwh + (β·∇hvh)wh

}
+

∫
∂Ω

(β·n)	vhwh

−
∑
F∈Fi

h

∫
F

(β·nF )JvhK{{wh}}+
∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK

Or, after element-by-element IBP,

aupw
h (vh, wh) =

∫
Ω

{
(µ−∇·β)vhwh − vh(β·∇hwh)

}
+

∫
∂Ω

(β·n)⊕vhwh

+
∑
F∈Fi

h

∫
F

(β·nF ){{vh}}JwhK +
∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK
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Upwinding IV

∫
Ω

{
µvhwh + (β·∇hvh)wh

}
,
∫
∂Ω

(β·n)	vhwh

∑
F∈Fi

h

∫
F

(β·nF )JvhK{{wh}},

∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK

Figure: Stencil of the different terms
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Upwinding V

Find uh ∈ Vh s.t. aupw
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh (Πupw
h )
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Upwinding VI

|||v|||2uw[ := |||v|||2cf +
∑
F∈Fi

h

∫
F

η

2
|β·nF |JvK2

Lemma (Consistency and discrete coercivity)

The discrete bilinear form aupw
h satisfies the following properties:

(i) Consistency, i.e., assuming u ∈ V∗,

aupw
h (u, vh) =

∫
Ω

fvh ∀vh ∈ Vh,

(ii) Coercivity on Vh with Csta = min(1, τcµ0),

∀vh ∈ Vh, aupw
h (vh, vh) ≥ Csta|||vh|||2uw[.
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Numerical fluxes

Proceeding as for acf
h we infer for all T ∈ Th,

ah(uh, ξχT ) =

∫
T

{
(µ−∇·β)uhξ − uh(β·∇ξ)

}
+
∑
F∈FT

εT,F

∫
F
φF (uh)ξ =

∫
T
fξ,

where, this time, the numerical flux is s.t.

φF (uh) =

{
β·nF {{uh}}+ η

2 |β·nF |JuhK if F ∈ F ih,
(β·n)⊕uh if F ∈ Fbh

The choice η = 1 leads to the classical upwind fluxes

φF (uh) =

{
β·nFu↑h if F ∈ F ih,
(β·n)⊕uh if F ∈ Fbh
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Error estimates based on inf-sup stability I

We define the stronger norm (βc := ‖β‖[L∞(Ω)]d)

|||v|||2uw] := |||v|||2uw[ +
∑
T∈Th

β−1
c hT ‖β·∇v‖2L2(T )

We assume that the model is well-resolved and that reaction is not
dominant

h ≤ βcτc
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Error estimates based on inf-sup stability II

Lemma (Discrete inf-sup condition for aupw
h )

There is C ′sta > 0, independent of h, µ, and β, s.t.

∀vh ∈ Vh, C ′staCsta|||vh|||uw] ≤ S := sup
wh∈Vh\{0}

aupw
h (vh, wh)

|||wh|||uw]
,

with Csta = min(1, τcµ0) ≤ 1 denoting the L2-coercivity constant.
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Error estimates based on inf-sup stability III

Lemma (Boundedness)

It holds

∀(v, wh) ∈ V∗h × Vh, |aupw
h (v, wh)| ≤ Cbnd|||v|||uw],∗|||wh|||uw],

with Cbnd independent of h, µ, and β and

|||v|||2uw],∗ := |||v|||2uw] +
∑
T∈Th

βc

(
h−1
T ‖v‖

2
L2(T ) + ‖v‖2L2(∂T )

)
.
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Error estimates based on inf-sup stability IV

Theorem (Error estimate)

Let u solve (Π) and let uh solve (Πupw
h ) where Vh = Pkd(Th) with k ≥ 0.

Then, it holds

|||u− uh|||uw] ≤ C inf
yh∈Vh

|||u− yh|||uw],∗,

with C independent of h and depending on the data only through the
factor {min(1, τcµ0)}−1.

Corollary (Convergence rate for smooth solutions)

Assume u ∈ Hk+1(Ω). Then, it holds

|||u− uh|||uw] ≤ Cuhk+1/2,

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the
data only through the factor {min(1, τcµ0)}−1.
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Part III

Scalar second-order PDEs
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Setting I

For f ∈ L2(Ω) we consider the model problem for viscous terms

−4u = f in Ω,

u = 0 on ∂Ω,

The weak formulation reads with V := H1
0 (Ω),

Find u ∈ V s.t. a(u, v) =

∫
Ω

fv for all v ∈ V , (Π)

where
a(u, v) :=

∫
Ω

∇u·∇v
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Setting II

The well-posedness of (Π) hinges on Poincaré’s inequality,

∀v ∈ H1
0 (Ω), ‖v‖L2(Ω) ≤ CΩ‖∇v‖[L2(Ω)]d

Indeed, a classical result is the coercivity of a,

∀v ∈ H1
0 (Ω), a(v, v) ≥ 1

1 + C2
Ω

‖v‖2H1(Ω)

Lemma (Continuity of the potential and of the diffusive flux)

Letting JvKF = {{v}}F = v for all F ∈ Fbh, it holds

JuK = 0 ∀F ∈ Fh,
J∇uK·nF = 0 ∀F ∈ F ih.
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Setting III

Assumption (Regularity of exact solution and space V∗)

We assume for the exact solution the regularity u ∈ V∗ with

V∗ := V ∩H2(Ω).

This implies, in particular, that the traces of both u and ∇u·nF are
square-integrable. We set

V∗h := V∗ + Vh.
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Roadmap for the design of dG methods

1 Extend the continuous bilinear form to V∗h × Vh by replacing

∇ ← ∇h

2 Check for stability
Remove bothering terms in a consistent way
If necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved

4 Prove boundedness by appropriately selecting |||·|||∗
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Symmetric Interior Penalty: Heuristic derivation I

We derive a dG method based on the space

Vh := Pkd(Th), k ≥ 1

For all (v, wh) ∈ V∗h × Vh we set, replacing ∇ ← ∇h,

a
(0)
h (v, wh) :=

∫
Ω

∇hv·∇hwh =
∑
T∈Th

∫
T

∇v·∇wh
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Consistency I

T1 T2

F

nF

Integrating by parts element-by-element we arrive at

a
(0)
h (v, wh) = −

∑
T∈Th

∫
T

(4v)wh +
∑
T∈Th

∫
∂T

(∇v·nT )wh

The second term in the RHS can be reformulated as follows:∑
T∈Th

∫
∂T

(∇v·nT )wh =
∑
F∈Fi

h

∫
F

J(∇hv)whK·nF +
∑
F∈Fb

h

∫
F

(∇v·nF )wh
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Consistency II

Moreover, letting ai = (∇v)|Ti , bi = wh|Ti , i ∈ {1, 2},

J(∇hv)whK = a1b1 − a2b2

= 1
2 (a1 + a2)(b1 − b2) + (a1 − a2) 1

2 (b1 + b2)

= {{∇hv}}JwhK + J∇hvK{{wh}}.

As a result, and accounting also for boundary faces,∑
T∈Th

∫
∂T

(∇v·nT )wh =
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK+
∑
F∈Fi

h

∫
F

J∇hvK·nF {{wh}}
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Consistency III

In conclusion,

a
(0)
h (v, wh) = −

∑
T∈Th

∫
T

(4v)wh +
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK

+
∑
F∈Fi

h

∫
F

J∇hvK·nF {{wh}}

To check consistency, set v = u. For all wh ∈ Vh,

a
(0)
h (u,wh) =

∫
Ω

fwh +
∑
F∈Fh

∫
F

{{∇u}}·nF JwhK

Hence, to obtain consistency we modify a(0)
h as follows:

a
(1)
h (v, wh) :=

∫
Ω

∇hv·∇hwh −
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK
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Symmetry I

A desirable property is symmetry since
it simplifies the solution of the linear system
it is used to prove optimal L2 error estimates

Thus, we consider the following symmetric modification of a(1)
h :

acs
h (v, wh) :=

∫
Ω

∇hv·∇hwh

−
∑
F∈Fh

∫
F

({{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF )
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Symmetry II

Element-by-element integration by parts yields

acs
h (v, wh) = −

∑
T∈Th

∫
T

(4v)wh +
∑
F∈Fi

h

∫
F

J∇hvK·nF {{wh}}

−
∑
F∈Fh

∫
F

JvK{{∇hwh}}·nF

This shows that acs
h retains consistency since

J∇huKF ·nF = 0 for all F ∈ F ih,
JuKF = 0 for all F ∈ Fh

95 / 160



Coercivity I

For all vh ∈ Vh it holds

acs
h (vh, vh) = ‖∇hvh‖2[L2(Ω)]d −2

∑
F∈Fh

∫
F

{{∇hvh}}·nF JvhK

The boxed term is nondefinite
We further modify acs

h as follows: For all (v, wh) ∈ V∗h × Vh,

asip
h (v, wh) := acs

h (v, wh) + sh(v, wh),

with the stabilization bilinear form

sh(v, wh) :=
∑
F∈Fh

η

hF

∫
F

JvKJwhK
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Coercivity II

We aim at asserting coercivity in the norm

∀v ∈ V∗h, |||v|||sip :=
(
‖∇hv‖2[L2(Ω)]d + |v|2J

) 1
2

,

with jump seminorm

|v|2J :=
∑
F∈Fh

1

hF
‖JvK‖2L2(F )

We anticipate the following discrete Poincaré’s inequality:

∀vh ∈ Vh, ‖vh‖L2(Ω) ≤ σ2|||vh|||sip,

with σ2 > 0 is independent of h
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Coercivity III

The choice for sh is justified by the following result.

Lemma (Bound on consistency and symmetry terms)

For all (v, wh) ∈ V∗h × Vh,∣∣∣∣∣∣
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK

∣∣∣∣∣∣ ≤
∑
T∈Th

∑
F∈FT

hF ‖∇v|T ·nF ‖2L2(F )

 1
2

|wh|J.

Moreover, if v = vh ∈ Vh,∣∣∣∣∣ ∑
F∈Fh

∫
F

{{∇hvh}}·nF JwhK

∣∣∣∣∣ ≤ CtrN
1
2

∂ ‖∇hvh‖[L2(Ω)]d |vh|J.
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Coercivity IV

Lemma (Discrete coercivity)

For all η > η := C2
trN∂ it holds

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cη|||vh|||2sip,

with Cη := (η − C2
trN∂)(1 + η)−1.
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Coercivity V

asip
h (v, wh) =

∫
Ω
∇hv·∇hwh −

∑
F∈Fh

∫
F

(
{{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF

)
+
∑
F∈Fh

η

hF

∫
F

JvKJwhK,

Using the bound on consistency and symmetry terms,

asip
h (vh, vh) ≥ ‖∇hvh‖2[L2(Ω)]d − 2CtrN

1/2
∂ ‖∇hvh‖[L2(Ω)]d |vh|J + η|vh|2J

For all β ∈ R+, η > β2, x, y ∈ R, it holds

x2 − 2βxy + ηy2 ≥ η − β2

1 + η
(x2 + y2)

Let β = CtrN
1/2
∂ , x = ‖∇hvh‖[L2(Ω)]d , y = |vh|J to conclude
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Coercivity VI

Lemma (Boundedness)

There is Cbnd, independent of h, s.t.

∀(v, wh) ∈ V∗h × Vh, asip
h (v, wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip.

where

|||v|||sip,∗ :=

(
|||v|||2sip +

∑
T∈Th

hT ‖∇v|T ·nT ‖2L2(∂T )

) 1
2
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Basic energy error estimate I

Find uh ∈ Vh s.t. asip
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh

Theorem (Energy error estimate)

Assume u ∈ V∗ and η > η. Then, there is C, independent of h, s.t.

|||u− uh|||sip ≤ C inf
vh∈Vh

|||u− vh|||sip,∗.
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Basic energy error estimate II

Corollary (Convergence rate in |||·|||sip-norm)

Additionally assume u ∈ Hk+1(Ω). Then, it holds

|||u− uh|||sip ≤ Cuhk,

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

The above estimate shows that convergence requires k ≥ 1

For an extension to the lowest-order case, cf. [Di Pietro, 2012]
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L2-norm error estimate I

Using the broken Poincaré inequality of [Brenner, 2004] one can infer

‖u− uh‖L2(Ω) ≤ σ′2Cuhk

This estimate is suboptimal by one power in h

An optimal estimate can be recovered exploiting symmetry

Further regularity for the problem needs to be assumed
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L2-norm error estimate II

Definition (Elliptic regularity)

Elliptic regularity holds true for the model problem (Π) if there is Cell,
only depending on Ω, s.t., for all ψ ∈ L2(Ω), the solution to the problem,

Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫
Ω

ψv for all v ∈ H1
0 (Ω),

is in V∗ and satisfies

‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω).

Elliptic regularity holds, e.g., if the domain Ω is convex [Grisvard, 1992]
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L2-norm error estimate III

Theorem (L2-norm error estimate)

Let u ∈ V∗ solve (Π) and assume elliptic regularity. Then, there is C,
independent of h, s.t.

‖u− uh‖L2(Ω) ≤ Ch|||u− uh|||sip,∗.

Corollary (Convergence rate in ‖·‖L2(Ω)-norm)

Additionally assume u ∈ Hk+1(Ω). Then, it holds

‖u− uh‖L2(Ω) ≤ Cuhk+1.

with Cu = C‖u‖Hk+1(Ω) and C independent of h.
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Liftings I

Liftings map jumps onto vector-valued functions defined on elements
Liftings play a key role in several developments

Flux and mixed formulations
Computable lower bound for η
Convergence for nonlinear problems

Key application: dG methods for the Navier–Stokes problem
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Liftings II

T1 T2

F

nF

For an integer l ≥ 0, we define the (local) lifting operator

rlF : L2(F ) −→ [Pld(Th)]d,

as follows: For all ϕ ∈ L2(F ),∫
Ω

rlF (ϕ)·τh =

∫
F

{{τh}}·nFϕ ∀τh ∈ [Pld(Th)]d

We observe that supp(rlF ) =
⋃
T∈TF T
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Liftings III

For all l ≥ 0 and v ∈ H1(Th), we define the (global) lifting

Rl
h(JvK) :=

∑
F∈Fh

rlF (JvK) ∈ [Pld(Th)]d

Rl
h(JvK) maps the jumps of v into a global, vector-valued volumic

contribution which is homogeneous to a gradient
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Discrete gradient I

For l ≥ 0, we define the discrete gradient operator

Glh : H1(Th) −→ [L2(Ω)]d,

as follows: For all v ∈ H1(Th),

Glh(v) := ∇hv − Rl
h(JvK)

The discrete gradient accounts for inter-element and boundary jumps

Lemma (Bound on discrete gradient)

Let l ≥ 0. For all v ∈ H1(Th), it holds

‖Glh(v)‖[L2(Ω)]d ≤ (1 + C2
trN∂)

1
2 |||v|||sip.
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Reformulation of asip
h I

Let l ∈ {k − 1, k} and set Vh = Pkd(Th) with k ≥ 1

It holds for all vh, wh ∈ Vh,

acs
h (vh, wh) =

∫
Ω

∇hvh·∇hwh−
∫

Ω

∇hvh·Rlh(JwhK)−
∫

Ω

∇hwh·Rlh(JvhK)

Indeed ∇hvh ∈ [Pld(Th)]d with l ≥ k − 1,

∀F ∈ Fh,
∫
F

{{∇hvh}}·nF JwhK =

∫
Ω

∇hvh· rlF (JwhK)

Using the definition of discrete gradients,

acs
h (vh, wh) =

∫
Ω

Glh(vh)·Glh(wh)−
∫

Ω

Rl
h(JvhK)·Rl

h(JwhK)
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Reformulation of asip
h II

Plugging the above expression into asip
h ,

asip
h (vh, wh) =

∫
Ω

Glh(vh)·Glh(wh) + ŝsip
h (vh, wh),

with

ŝsip
h (vh, wh) :=

∑
F∈Fh

η

hF

∫
F

JvhKJwhK−
∫

Ω

Rl
h(JvhK)·Rl

h(JwhK)

Dropping the negative term in ŝsip
h leads to the Local Discontinuous

Galerkin (LDG) method of [Cockburn and Shu, 1998]

This method has the drawback of having a significantly larger stencil
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Reformulation of asip
h III

∫
Ω

∇hvh·∇hwh

∫
Ω

(
∇hvh·Rlh(JwhK)+∇hwh·Rlh(JvhK)

)
,∑

F∈Fh

η

hF

∫
F

JvhKJwhK

∫
Ω

Rlh(JuhK)·Rlh(JvhK),
∫

Ω

Glh(vh)·Glh(wh)

Figure: Stencil of the different terms
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Reformulation of asip
h IV

Lemma (Coercivity (alternative form))

For all vh ∈ Vh,

‖Gh(vh)‖2[L2(Ω)]d + (η − C2
trN∂)|vh|2J ≤ ah(vh, vh).

Proof.
Observe that

ah(vh, vh) = ‖Gh(vh)‖2[L2(Ω)]d + η|vh|2J − ‖Rh(JvhK)‖2[L2(Ω)]d ,

and use the L2-stability of Rh to conclude.
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Numerical fluxes I

Let T ∈ Th, ξ ∈ Pkd(T ). Element-by-element IBP yields∫
T

fξ = −
∫
T

(4u)ξ =

∫
T

∇u·∇ξ −
∫
∂T

(∇u·nT )ξ.

Hence, letting ΦF (u) := −∇u·nF and εT,F = nT ·nF ,∫
T

∇u·∇ξ +
∑
F∈FT

εT,F

∫
F

ΦF (u)ξ =

∫
T

fξ.

Our goal is to identify a similar local conservation property for uh
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Numerical fluxes II

Using vh = ξχT as test function we obtain∫
T
fξ = asip

h (uh, ξχT ) =

∫
T
∇uh·∇ξ −

∑
F∈FT

∫
F
{{(∇ξ)χT }}·nF JuhK

−
∑
F∈FT

∫
F
{{∇huh}}·nF JξχT K +

∑
F∈FT

∫
F

η

hF
JuhKJξχT K

Let l ∈ {k − 1, k}. For all T ∈ Th and all ξ ∈ Pkd(T ),∫
T

Glh(uh)·∇ξ+
∑
F∈FT

εT,F

∫
F

φF (uh)ξ =

∫
T

fξ,

with
φF (uh) := −{{∇huh}}·nF︸ ︷︷ ︸

consistency

+
η

hF
JuhK︸ ︷︷ ︸

penalty
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Numerical fluxes III

Taking ξ ≡ 1 we infer the FV flux conservation property,∑
F∈FT

εT,F

∫
F

φF (uh) =

∫
T

f

Also in the elliptic case local conservation holds on the computational
mesh (as opposed to vertex- or face-centered dual mesh)
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Part IV

Applications in fluid dynamics
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Outline

11 Stokes

12 Navier–Stokes
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The Stokes problem I

We consider the flow of a highly viscous fluid

The governing Stokes equations read

−4u+∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on ∂Ω,

〈p〉Ω = 0
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The Stokes problem II

Let L2
0(Ω) :=

{
v ∈ L2(Ω) | 〈v〉Ω = 0

}
and set

U := [H1
0 (Ω)]d, P := L2

0(Ω), X := U × P

We equip U , P , and X with the following norms

‖v‖U := ‖v‖[H1(Ω)]d :=

(
d∑
i=1

‖vi‖2H1(Ω)

)1/2

‖q‖P := ‖q‖L2(Ω),

‖(v, q)‖X :=
(
‖v‖2U + ‖q‖2P

)1/2
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The Stokes problem III

For all (u, p), (v, q) ∈ X let

a(u, v) :=

∫
Ω

∇u:∇v, b(v, q) := −
∫

Ω

q∇·v, B(v) :=

∫
Ω

f ·v,

The weak formulation reads: Find (u, p) ∈ X s.t.

a(u, v) + b(v, p) = B(v) ∀v ∈ U,
−b(u, q) = 0 ∀q ∈ P

(ΠS)

(ΠS) is a constrained energy minimization problem

The pressure is the Lagrange multiplier of the incompressibility
constraint
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The Stokes problem IV

Equivalently, defining the bilinear form S ∈ L(X ×X,R) s.t.

S((u, p), (v, q)) := a(u, v) + b(v, p)− b(u, q),

we can formulate the problem as

Find (u, p) ∈ X s.t. S((u, p), (v, q)) = B(v) for all (v, q) ∈ X
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The Stokes problem V

Well-posedness hinges on the coercivity of a and on the inf-sup on b

inf
q∈P\{0}

sup
v∈U\{0}

b(v, q)

‖v‖U‖q‖P
≥ βΩ > 0

Equivalently,

∀q ∈ P, βΩ‖q‖P ≤ sup
v∈U\{0}

b(v, q)

‖v‖U
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The Stokes problem VI

Lemma (Surjectivity of the divergence operator from U to P )

Let Ω ∈ Rd, d ≥ 1, be a connected domain. Then, there exists βΩ > 0
s.t. for all q ∈ P , there is v ∈ U satisfying

q = ∇·v and βΩ‖v‖U ≤ ‖q‖P .

Proof.
See, e.g., [Girault and Raviart, 1986].
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The Stokes problem VII

Proof of the continuous inf-sup condition

Let q ∈ P and let v ∈ U denote its velocity lifting. The case v = 0 is
trivial, so let us suppose v 6= 0:

‖q‖2P =

∫
Ω

q∇·v = −b(v, q)

≤ sup
w∈U\{0}

b(w, q)

‖w‖U
‖v‖U

≤ β−1
Ω sup

w∈U\{0}

b(w, q)

‖w‖U
‖q‖P ,

and the conclusion follows.
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Equal-order discretization I

For an integer k ≥ 1 define the following spaces:

Uh := [Pkd(Th)]d, Ph := Pkd(Th) ∩ L2
0(Ω), Xh := Uh × Ph

Discrete pressure-velocity coupling: For all (vh, qh) ∈ Xh, set

bh(vh, qh) := −
∫

Ω

(∇h·vh)qh +
∑
F∈Fh

∫
F

JvhK·nF {{qh}} = −
∫

Ω

Dl
h(vh)qh

=

∫
Ω

vh·∇qh −
∑
F∈Fi

h

∫
F

{{vh}}·nF JqhK,

with l = k and

Dl
h(vh) := tr(Glh(vh)) = ∇h·vh − tr(Rlh(JvhK))
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Equal-order discretization II

Extending bh to [H1(Th)]d ×H1(Th), consistency is expressed as

∀(v, qh) ∈ U × Ph, bh(v, qh) = −
∫

Ω

qh∇·v,

∀(vh, q) ∈ Uh ×H1(Ω), bh(vh, q) =

∫
Ω

vh·∇q,

since, for all v ∈ U and all q ∈ H1(Ω),

JvK = 0 ∀F ∈ Fh
JqK = 0 ∀F ∈ F ih
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Equal-order discretization III

Lemma (Discrete generalized inf-sup condition)

There is β > 0 independent of h s.t. s.t.

∀qh ∈ Ph, β‖qh‖P ≤ sup
vh∈Uh\{0}

bh(vh, qh)

‖vh‖dG
+ |qh|p,

where
|qh|2p :=

∑
F∈Fi

h

hF ‖JqhK‖2L2(F ).
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Equal-order discretization IV

We stabilize the pressure-velocity coupling using the bilinear form

∀(ph, qh) ∈ Ph, sh(ph, rh) :=
∑
F∈Fi

h

hF

∫
F

JphKJqhK

The discrete counterpart of S is Sh ∈ L(Xh ×Xh,R) s.t.

Sh((uh, ph), (vh, qh)) :=
ah(uh, vh) + bh(vh, ph)− bh(uh, qh) + sh(ph, qh),

where

ah(w, v) :=

d∑
i=1

asip
h (wi, vi)
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Equal-order discretization V

The discrete problem reads: Find (uh, ph) ∈ Xh s.t.

Sh((uh, ph), (vh, qh)) = B(vh) ∀(vh, qh) ∈ Xh (ΠS,h)

Equivalently: Find (uh, ph) ∈ Xh s.t.

ah(uh, vh) + bh(vh, ph) = B(vh) ∀vh ∈ Uh,
−bh(uh, qh) + sh(ph, qh) = 0 ∀qh ∈ Ph

This corresponds to a linear system of the form[
Ah Bh

−Bt
h Ch

] [
Uh

Ph

]
=

[
Fh
0

]
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Stability I

Equip Xh with the the following norm:

‖(vh, qh)‖2S := |||vh|||2vel + ‖qh‖2P + |qh|2p,

where

|||v|||2vel :=
d∑
i=1

|||vi|||2sip

Owing to partial coercivity,

∀(vh, qh) ∈ Xh, α|||vh|||2vel + |qh|2p ≤ Sh((vh, qh), (vh, qh))
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Stability II

Lemma (Discrete inf-sup for Sh)

There is cS > 0 independent of h s.t., for all (vh, qh) ∈ Xh,

cS‖(vh, qh)‖S ≤ sup
(wh,rh)∈Xh\{0}

Sh((vh, qh), (wh, rh))

‖(wh, rh)‖S
.

Proof.
Consequence of the coercivity of ah and the discrete inf-sup on bh.
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Convergence to smooth solutions I

Assumption (Regularity of the exact solution and space X∗)

We assume that the exact solution (u, p) is in X∗ := U∗ × P∗ where

U∗ := U ∩ [H2(Ω)]d, P∗ := P ∩H1(Ω).

Additionally, we set

U∗h := U∗ + Uh, P∗h := P∗ + Ph, X∗h := X∗ +Xh.

Lemma (Jumps of ∇u and p across interfaces)

Assume (u, p) ∈ X∗. Then,

J∇uK·nF = 0 and JpK = 0 ∀F ∈ F ih.
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Convergence to smooth solutions II

Lemma (Consistency)

Assume that (u, p) ∈ X∗. Then,

Sh((u, p), (vh, qh)) =

∫
Ω

f ·vh ∀(vh, qh) ∈ Xh.
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Convergence to smooth solutions III

We have proved an inf-sup condition for Sh
It remains to investigate the boundedness of Sh
Defining the augmented norm

|||(v, q)|||2sto,∗ := |||(v, q)|||2sto+
∑
T∈Th

hT ‖∇v|T ·nT ‖2L2(∂T )+
∑
T∈Th

hT ‖q‖2L2(∂T ),

for all ∀(v, q) ∈ X∗h, (wh, rh) ∈ Xh, with Cbnd independent of h,

Sh((v, q), (wh, rh)) ≤ Cbnd|||(v, q)|||sto,∗|||(wh, rh)|||sto
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Convergence to smooth solutions IV

Theorem (|||·|||sto-norm error estimate and convergence rate)

Then, there is C, independent of h, s.t.

|||(u− uh, p− ph)|||sto ≤ C inf
(vh,qh)∈Xh

|||(u− vh, p− qh)|||sto,∗.

Moreover, if (u, p) ∈ [Hk+1(Ω)]d ×Hk(Ω),

|||(u− uh, p− ph)|||sto ≤ Cu,phk,

with Cu,p = C
(
‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)

)
.
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Convergence to minimal regularity solutions I

Theorem (Convergence to minimal regularity solutions)

Let (uH, pH) := ((uh, ph))h∈H solve (ΠS,h) on the admissible mesh
sequence TH. Then, as h→ 0,

uh → u strongly in [L2(Ω)]d,

Gh(uh)→ ∇u strongly in [L2(Ω)]d,d,

∇huh → ∇u strongly in [L2(Ω)]d,d,

|uh|J → 0,

ph → p strongly in L2(Ω),

|ph|p → 0,

where (u, p) ∈ X is the unique solution to (ΠS).
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Convergence to minimal regularity solutions II

Lemma (A priori estimate)

The problem (ΠS,h) is well-posed with the following a priori estimate:

‖(uh, ph)‖S ≤
σ2

cS
‖f‖[L2(Ω)]d .

A priori estimate + discrete Rellich theorem [DP & Ern, 10]:
convergence of (uH, pH) up to a subsequence

Test using regular functions and conclude using density that the
limit solves (ΠS)
Use continuous uniqueness to infer that the whole sequence
converges

Use partial coercivity to prove convergence of the gradients
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The incompressible Navier–Stokes problem I

The Navier–Stokes problem reads

−ν4u+ (u·∇)u+∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on ∂Ω,

〈p〉Ω = 0

The nonlinear advection term is the physical source of turbulence

Uniqueness holds only under a suitable small data assumption

140 / 160



The incompressible Navier–Stokes problem II

We introduce the trilinear form t ∈ L(U × U × U,R) is such that

t(w, u, v) :=

∫
Ω

(w·∇u)·v =

∫
Ω

d∑
i,j=1

wj(∂jui)vi.

The weak formulation reads: Find (u, p) ∈ X s.t., for all (v, q) ∈ X,

νa(u, v) + b(v, p) + t(u, u, v)− b(u, q) = B(v) (ΠNS)
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The incompressible Navier–Stokes problem III

Lemma (Skew-symmetry of trilinear form)

Letting

t′(w, u, v) := t(w, u, v) +
1

2

∫
Ω

(∇·w)u·v,

it holds, for all w ∈ U ,

∀v ∈ U, t′(w, v, v) = 0.

Moreover, if w ∈ V := {v ∈ U | ∇·v = 0},

∀v ∈ U, t(w, v, v) = 0.
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The incompressible Navier–Stokes problem IV

Let w ∈ U . We observe that, for all v ∈ U ,

t(w, v, v)+
1

2

∫
Ω

(∇·w)|v|2 =

∫
Ω

1

2
w·∇|v|2+1

2

∫
Ω

(∇·w)|v|2 =

∫
Ω

1

2
∇·(w|v|2),

The divergence theorem yields

t(w, v, v) +
1

2

∫
Ω

(∇·w)|v|2 =
1

2

∫
∂Ω

(w·n)|v|2 = 0,

since (w·n) vanishes on ∂Ω thus proving the first point

The second point is an immediate consequence of the first
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The incompressible Navier–Stokes problem V

As a consequence, letting (v, q) = (u, p) in (ΠNS),

ν‖∇u‖2[L2(Ω)]d,d =

∫
Ω

f ·u,

where we have used ∇·u = 0

This shows that convection does not influence energy balance

144 / 160



Design of the discrete trilinear form I

Our starting point is, for wh, uh, vh ∈ Uh,

t
(0)
h (wh, uh, vh) :=

∫
Ω

(wh·∇huh)·vh +
1

2

∫
Ω

(∇h·wh)uh·vh

Skew-symmetry: For all wh, vh ∈ Uh, element-wise IBP yields,

t
(0)
h (wh, vh, vh) =

1

2

∑
F∈Fh

∫
F

JwhK·nF {{vh·vh}}+
∑
F∈Fi

h

∫
F
{{wh}}·nF JvhK·{{vh}}

We modify t(0)
h as

th(wh, uh, vh) :=

∫
Ω

(wh·∇huh)·vh −
∑
F∈Fi

h

∫
F

{{wh}}·nF JuhK·{{vh}}

+
1

2

∫
Ω

(∇h·wh)(uh·vh)−
1

2

∑
F∈Fh

∫
F

JwhK·nF {{uh·vh}}
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Design of the discrete trilinear form II

Lemma (Skew-symmetry of discrete trilinear form)

For all wh ∈ Uh, it holds

∀vh ∈ Uh, th(wh, vh, vh) = 0.
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Design of the discrete trilinear form III

Let

Nh((uh, ph), (vh, qh)) :=

νah(uh, vh) + bh(vh, ph)− bh(uh, qh) + th(uh, uh, vh)

The discrete problem reads: Find (uh, ph) ∈ Xh s.t.

Nh((uh, ph), (vh, qh)) = B(vh) ∀(vh, qh) ∈ Xh (ΠNS,h)

The existence of a solution to (ΠNS,h) can be proved by a
topological degree argument
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A priori estimate

Lemma (A priori estimate)

There are c1, c2 independent of h such that

‖(uh, ph)‖S ≤ c1‖f‖[L2(Ω)]d + c2‖f‖2[L2(Ω)]d .

Also in this case, this a priori estimate is instrumental to apply the
discrete Rellich theorem of [DP & Ern, 10]
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Convergence to minimal regularity solutions

Theorem (Convergence to minimal regularity solutions)

Let (uH, pH) := ((uh, ph))h∈H solve (ΠNS,h) on the admissible mesh
sequence TH. Then, as h→ 0 and up to a subsequence,

uh → u strongly in [L2(Ω)]d,

Gh(uh)→ ∇u strongly in [L2(Ω)]d,d,

∇huh → ∇u strongly in [L2(Ω)]d,d,

|uh|J → 0,

ph ⇀ p weakly in L2(Ω),

|ph|p → 0.

Moreover, under the small data condition, the whole sequence converges.

149 / 160



Numerical validation I

Let Ω = (−0.5, 1.5)× (0, 2)

We consider Kovasznay’s solution

u1 = 1− e−πx2 cos(2πx2),

u2 = −1

2
eπx1 sin(2πx2),

p = −1

2
eπx1 cos(2πx2)− p̃,

with p̃ ' −0.920735694, ν = 1
3π and f = 0

TH is a family of uniformly refined triuangular meshes, with h
ranging from 0.5 down to 0.03125
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Numerical validation II

h ‖eh,u‖[L2(Ω)]d order ‖eh,p‖L2(Ω) order ‖eh‖S order
h0 8.87e− 01 – 1.62e+ 00 – 1.19e+ 01 –
h0/2 2.39e− 01 1.89 6.11e− 01 1.41 7.26e+ 00 0.71
h0/4 5.94e− 02 2.01 2.01e− 01 1.60 3.68e+ 00 0.98
h0/8 1.59e− 02 1.90 7.40e− 02 1.44 1.85e+ 00 0.99
h0/16 4.17e− 03 1.93 3.14e− 02 1.23 9.25e− 01 1.00
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A variation with a simple physical interpretation I

∂tu+∇·(−ν∇u+ F (u, p)) = f, in Ω,

∇·u = 0, in Ω,

u = 0, on ∂Ω,∫
Ω

p = 0

Fij(u, p) := uiuj + pδij
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A variation with a simple physical interpretation II

Let F ∈ F ih, P ∈ F and define

uν := u·nF , uτ := u·τF

Restricting the problem to the normal direction we have

h2
F

c2
∂tp+ ∂xuν = 0,

∂tuν + ∂x(u2
ν + p) = 0,

∂tuτ + ∂x(uνuτ ) = 0

ντ

xy

P

To recover a hyperbolic problem we add an artificial compressibility
term

The inviscid flux can be obtained as the solution associated Riemann
problem with initial datum (u+

h , p
+
h ), (u−h , p

−
h ) at P
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A variation with a simple physical interpretation III

x

t

centered wavecentered wave
contact discontinuity

RL

∗

Figure: Structure of the Riemann problem.
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A variation with a simple physical interpretation IV

The exact solution can be found using the Riemann invariants
(rarefactions) and the Rankine-Hugoniot jump conditions (shocks)

Following a similar procedure, it is possible to write the Riemann
problem associated to the Stokes equations

Let (u∗, p∗) be the solution We define the inviscid flux as

F̂ (u+
h , p

+
h ;u−h , p

−
h ) := F (u∗, p∗) = u∗i u

∗
j + p∗δij ,

û(u+
h , p

+
h ;u−h , p

−
h ) := u∗.

In the Stokes case, an explicit expression is available for the fluxes
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Numerical Fluxes for the Linearized Problems

We introduce the pressure flux p̂ = p∗ so that (û, p̂) = (u∗, p∗)

In the Stokes case we obtain

û := {{uh}}+
hF
2c

JphKnF ,

p̂ := {{ph}}+
c

2hF
JuhK·nF

Take c = 2 and compare with the numerical fluxes for the method
we have analyzed!
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