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Introduction |
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Figure: Entries with the keyword “discontinuous Galerkin” in MathSciNet
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Introduction Il
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Figure: Accuracy in advective problems [Di Pietro et al., 2006]
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Introduction |11

Figure: Compressible flow on Onera M6 wing profile [Bassi, Crivellini, DP, & Rebay, 2006]
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Introduction IV

y (vertical centerline)

x (horizontal centerline)
-0.4 -0.2 0 0.2 0.4

02 0 02 04 06 08 1
u velocity component

Figure: High-order accuracy in convection-dominated flows (3d lid-driven cavity,

[Botti and Di Pietro, 2011])
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Introduction V
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Figure: Transient incompressible flows, Turek cylinder [Bassi, Crivellini, DP, & Rebay, 2007]
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Introduction VI
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Figure: High-order in space-time
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Introduction VII
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Figure: Degenerate advection-diffusion [Di Pietro et al., 2008]
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Introduction VIII
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Figure: Adaptive derefinement [Bassi, Botti, Colombo, DP, Tesini, 2012]
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The origins: First-order PDEs

m [Reed and Hill, 1973], dG for steady neutron transport

m [Lesaint and Raviart, 1974], first error estimate

m [Johnson and Pitkdranta, 1986], improved estimate

m [Cockburn and Shu, 1989], explicit Runge—Kutta dG methods
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The origins: Second-order PDES

m [Nitsche, 1971], boundary penalty methods

m [Babuska and Zlamal, 1973], Interior Penalty for bcs

m [Arnold, 1982], Symmetric Interior Penalty (SIP) dG method

m [Bassi and Rebay, 1997], compressible Navier—Stokes equations
m [Arnold et al., 2002], unified analysis
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Part |
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QOutline

Broken spaces and operators

Abstract nonconforming error analysis

Mesh regularity

14 /160



Faces, averages, and jumps |

Definition (Mesh)

A mesh T of ) is a finite collection of disjoint open polyhedra 7 = {T'}
st. Uper T = Q. Each T € T is called a mesh element.

Definition (Element diameter, meshsize)

Let 7 be a mesh of Q. For all T € T, ht denotes the diameter T', and
the meshsize is defined as

h := max hr.
TeT

We use the notation 7j, for a mesh 7 with meshsize h.
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Faces, averages, and jumps |l

Figure: Example of mesh
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Faces, averages, and jumps IlI

Definition (Mesh faces)

A closed subset F' of €2 is a mesh face if |F|;_1 > 0 and
m either 377,75 € Ty, T1 # Ty, s.t. F = 9Ty N 915 (interface);
mor 3T €Ty, st. F=0T N (boundary face).

Figure: Examples of interfaces
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Faces, averages, and jumps |V

m Interfaces are collected in F?, boundary faces in ]—'}Z, and
Fni=FLUFy.
m Forall T € T;, we let
Fr:={F e F,|FcCoT},
and we set
Ny = max card(Fr)

m Symmetrically, for all F' € Fj,, we let

Tr:={T €Ty | F c 0T}
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Faces, averages, and jumps V

Definition (Interface averages and jumps)

Assume v : 2 — R smooth enough to admit a possibly two-valued trace
on all interfaces. Then, for all F' € ] we let

1
{U} = §(U|T1 + U|T2)7 [[’U]] = U|T1 - v|T2'

For all F' € 7 with F C 0T we conventionally set {v} = [v] = v|7.
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Broken polynomial spaces |

Table: Dimension of P% for 1 < d < 3and 0 < k < 3

Hence, the number of DOFs is

dim(PX(75,)) = card(Ty) x card(P%) = card(T;,) x

(Discontinuous Galerkin methods hinge on broken polynomial spaces,

PE(Th) := {v € L*(Q) | VT € T, v|r € P5(T)}

(k + d)!

kld!

N
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Broken polynomial spaces Il
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Figure: Orthonormal polynomial basis functions for an L-shaped element
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Lebesgue spaces

m With v : Q — R Lebesgue measurable and 1 < p < +00, we set

1/1)
[v]lLr (@) = </ |vp> V1 < p < +o0,
Q

and, for p = +o0,
|vl|Loe () == inf{M >0 | jv(z)| < M ae. z € Q}

m In either case, we define the Lebesgue space

‘LP(Q) := {v Lebesgue measurable | ||v||1r) < +oo}‘

m Equipped with [|-[z»(q), LP(R) is a Banach space for all p
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Sobolev spaces |

m Let 0; denote the distributional partial derivative with respect to x;

m For a d-uple a = (g, ..., aq) € N? we note
0% =07 ... 07"

m For an integer m > 0 we define the Sobolev space

H™(Q) = {veL*(Q)|Vaec A}, 0% € L*(Q)},

with A7 := {a € N? | |a|n <m}
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Sobolev spaces |l

m H™(Q) is a Hilbert space when equipped with the scalar product

(’U,'LU)Hm(Q) = Z (8av,8aw)L2(Q),

a€AT

m The corresponding norm is

N

vl m (@) = ( > ||3av|iz(n)) ,

a€AT

m The case m = 1 will be of particular importance in what follows
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Broken Sobolev spaces and broken gradient |

m We formulate local regularity in terms of broken Sobolev spaces

H™(Tp) == {v € L*(Q) |VT € Ty, v|r € H™(T)}

m Clearly, H™(Q) c H™(Ty)

m We record for future use that

functions in H'(T;,) have trace in L2(0T) for all T € Ty,
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Broken Sobolev spaces and broken gradient Il

Definition (Broken gradient)
The broken gradient V, : HY(T;,) — [L?(R)]¢ is defined s.t.

Yo € HY(Tp), (Vio)lr :=V(v|r) VT € Th.

Lemma (Characterization of H'(Q))
A function v € H(T}) belongs to H'(Q) if and only if

[v] =0 VFeF.
Moreover it holds, for all v € H*(2),

Vv = Vo in [L*(Q)]%.
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Abstract nonconforming error analysis |

m Let V be a function space s.t., with dense and continuous injections,
Ve L2(Q) = L2(Q) — V'’

mletae L(VXV,R)and f eV’

m We consider the model linear problem

‘Find u €V st a(u,w) = (f,w)y: v forall we V‘ (I1)
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Abstract nonconforming error analysis |l

m Fix k>0 andset V), := Pf}‘(ﬂ,,). In general, V}, is nonconforming:
VgV

m With ap, € L(VyxV,,,R), I, € L(V},R), a dG method for (II) reads

‘ Find up, € Vi s.t. ap(up,wp) = Uy (wp) for all wy, € Vh‘ (I1)

m When is (IT;) a good approximation of (II)?
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Abstract nonconforming error analysis Il

m Let ||| and ||-||« denote two norms on a subspace V,p, of V +V},

m We formulate conditions to bound the error in the stability norm
lle = unll
by the best approximation error in V}, in the boundedness norm

e e
Jnf v —yall.

m In the analysis of dG methods we often have

-0 111l

29 /160



Abstract nonconforming error analysis |V

Definition (Discrete stability)

We say that the discrete bilinear form ay, enjoys discrete stability on V}, if
there is Cgio > 0 independent of h s.t.

ap(vp, W
Von € Vh,  Cualloall < sup 2nlomtn)

, (inf-sup)
wp €V \{0} ”lwh m

or, equivalently,

Cow<  inf cup | nnwh)
un€Vi\{0} w,, evi\ {0} Nvnllllwsll

(Stability answers the question: Can we solve the discrete problem? )
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Abstract nonconforming error analysis V

m A sufficient condition for discrete stability is coercivity,

V"Uh S Vh, Csta”lvh ”|2 < CLh(Uh, ’Uh)

m Discrete coercivity implies (inf-sup) since, for all v;, € Vj, \ {0},

an(Vh, Un) sup an(vp, wp)

Cstallon]l <€ ———=— <
[lonl wnevi{or  lwall
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Abstract nonconforming error analysis VI

m For consistency we need to plug u into the first argument of a;,

m However, in most cases a;, cannot be extended to V' x V},

Assumption (Regularity of the exact solution)

We assume that there is V,, C V s.t.
m ayp can be extended to V., x V}, and

m the exact solution u is s.t. u € V,.
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Abstract nonconforming error analysis VII

Definition (Consistency)

The discrete problem (IIj) is consistent if for the exact solution u € V4,
ah(u,wh) = lh(wh) Ywy, € Vp,. (cons.)
When consistency holds, uy, is the aj,-orthogonal projection of u

ap(u — up,wp) =0 Ywyp, € V.

Consistency answers the question: Is the discrete problem representa-
tive of the continuous one?
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Abstract nonconforming error analysis VIII

m If u € V,, the error satisfies u — uy, € Vi, with
Vin =V +
m We introduce a second norm ||| s.t.

Yo eVin, vl <ol

Definition (Boundedness)

The discrete bilinear form a;, is bounded in Vi, x V3, if there is Cypnqg
independent of A s.t.

V(v,wp) € Vi X Vi, an(v, wn)| < Conallv]|« lwn]]-
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Abstract nonconforming error analysis IX

Theorem (Abstract error estimate)

Let u solve (II) and assume w € V... Then, assuming discrete stability,
consistency, and boundedness, it holds

Cbnd \ .
— <[14+— f = 20 t.
-l < (14 32 e fu el (est)

sta
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Abstract nonconforming error analysis X

inf |lu-— <|lw—upl| <C inf [|lu—
Jinf u—yl < flu—un] <C inf il

Definition (Optimal, quasi-optimal, and suboptimal error estimate)

We say that the above error estimate is
m optimal if ||-| = ||-[I«

m quasi-optimal if ||| # ||-||«, but the lower and upper bounds
converge, for smooth u, at the same convergence rate as h — 0

m suboptimal if the upper bound converges more slowly
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Abstract nonconforming error analysis XI

m Let yp € V3. Owing to discrete stability and consistency,

ap\up — w
fon -l <Oyl sup nl8n—Unwh)

wp €V \{0} |||’LUh ”|
_Cl s an(u — yn, wp) + ap(wr—a;wp)
wn€Vi\{0} s |

m Hence, using boundedness,

lun = ynll < CiaConallu — ynll«

m Estimate (est.) then results from the triangle inequality, the fact
that |lu — yn|| < [lu — ynl|«, and that y; is arbitrary in V4,
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Roadmap for the design of dG methods

Extend the continuous bilinear form to Vi, x V3, by replacing

V(—Vh

Check for

m Remove bothering terms in a consistent way
m If necessary, tighten stability by penalizing jumps

If things have been properly done, is preserved
Prove by appropriately selecting |||
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Mesh regularity |

m To prove discrete stability, consistency, and boundedness we need
basic results such as trace and inverse inequalities

m For convergence, V}, must enjoy approximation properties

inf - < O ht
,int lu —yull < Cu

This requires regularity assumptions on the mesh sequence

T = (Th)hen
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Mesh regularity Il

Definition (Shape and contact regularity)

The mesh sequence T3 is shape- and contact-regular if for all h € H, Tj,
admits a matching simplicial submesh G, s.t.

(i) There is a o1 > 0, independent of h, s.t.
VT’ € Gy, othr: < rrv,

with 77 radius of the largest ball inscribed in T”;

(ii) There is o2 > 0, independent of h s.t.

VT € Ty, VI' € &1, o0shy < hy.

If 75, is itself matching and simplicial, the only requirement is shape-
regularity with parameter ¢; > 0 independent of h.
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Mesh regularity Il

LT A
s

Figure: Mesh T;, and matching simplicial submesh &,



Mesh regularity IV

m We wish to have optimal approximation properties for

(P& (Th)) e,

m Since we consider continuous problems posed in a space V s.t.
Ve L2(Q) = LA(Q) — V',

it is natural to focus on the L?-orthogonal projector 7} s.t.

Yv € L2(Q), (’/TZ'U — U,U)h)LZ(Q) =0 VYuw, € PS(E)

m This also allows to deal naturally with polyhedral elements
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Mesh regularity V

Let T3, denote a shape- and contact-regular mesh sequence. Then, for all
heH, all T €Ty, and all polynomial degree k, it holds

Vs €{0,....,k+1}, Ym €{0,...,s}, Yv € H*(T),

|’U — FZ’U|Hm(T) S Oapph;ﬂ_m|’U|Hs(T),

where Cypp is independent of both T' and h.
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Part Il
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QOutline

The continuous setting

Centered fluxes

@ Upwind fluxes
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The continuous problem |

m We consider the following steady advection-reaction problem:

B-Vu+pu=f inQ,
u=0 ondQ~,

where f € L?(Q) and
o0NE == {x € 9Q| +B(z)n(x) > 0}
m We further assume
pel=@), BeLp@), A= p-3962p

m As a starting point, we need a suitable weak formulation
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Traces and continuous IBP formula |

m The natural space to look for the solution is the graph space

Vi={veL*(Q)|BVveL*Q)}

m V is a Hilbert space when equipped with the inner product
(v, W)y = (v,w)r2() + (B-Vv, B:-Vw) 2 ()

m To deal with BCs, we study the traces of functions in V' in the space

L%(|Bn|;00) == {v is measurable on 09 ‘ /asz |Bnfv® < OO}
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Traces and continuous IBP formula 1l

Assumption (Inflow/ouflow separation)

We assume henceforth inflow/outflow separation,

dist(0Q~,007) = min |z —y| > 0.
(z,y) €00~ x0T

T2

;xl

Figure: Counter-example for inflow/outflow separation
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Traces and continuous IBP formula Il

Lemma (Traces and integration by parts)

In the above framework, the trace operator
7: C%(Q) 3 v 4(v) = vloa € L*(|B-n];09)
extends continuously to V, i.e., there is C, s.t., for allv € V,
(@)l L2(nps00) < Cyllvllv

Moreover, the following IBP formula holds true: For all v,w €V,

/ (B-Vv)w + (B-Vaw)o + (V-B)vu] = / (@) w)e).
Q o0

49 /160



Weak formulation and well-posedness |

m We introduce the following bilinear form:

av.w) = [ pows [ @Vt [ (n)vw,

where

53]

2% = = (|z] + 2), x® ::1(|x|—x)

2

m For all v,w € V, the Cauchy—Schwarz inequality together with the
bound ||v(v)||L2(|g.n;00) < Cyllv]|v yield boundedness for a

| =

1
2
a(v.w)| < (14 IulEei))  Iollv Il 2 + C2lellv il
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Weak formulation and well-posedness ||

Lemma (L?-coercivity of a)

The bilinear form a is L?-coercive on V', namely,

1
Yv eV, a(v,v) > uoHUHQLg(Q) —|—/ i\ﬂ-nhﬂ.
o0
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Weak formulation and well-posedness Il

atv.w) = [ ww+ [ @0t [ (Buo,

For all v € V, IBP yields
1 2 1 2 o,2
a(v,v)= [ |p=5VB|v + [ S(Bnjp°+ [ (Bn)v
Q 2 o0 2 o9
1
= [ Av? —|—/ —|B-njv?
) o0 2
1
> ol + [ 31Aal?
o9

where we have used the assumption A > iy > 0 to conclude. O
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Weak formulation and well-posedness |V

Find u € V s.t. a(u,w) = / fwforallweV (11)
Q

Lemma (Well-posedness and characterization of (II))

Problem (I1) is well-posed and its solution w € V is s.t.

B-Vu+ pu=f a.e. in Q,
u=0 a.e. in 90" .

m Weak formulation with weakly enforced homogeneous inflow BCs

m Extensions possible to inhomogeneous BCs and systems
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Roadmap for the design of dG methods

Extend the continuous bilinear form to Vi, x V3, by replacing

V(—Vh

Check for

m Remove bothering terms in a consistent way
m If necessary, tighten stability by penalizing jumps

If things have been properly done, is preserved
Prove by appropriately selecting |||
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Heuristic derivation |

Assumption (Regularity of exact solution and space V)

We assume that there is a partition Po = {€;}1<;<n,, of Q into disjoint
polyhedra s.t.
u €V, :=VnHY(P).

Additionally, we set
Vin = Vi + V.

Lemma (Jumps of u across interfaces)

Ifu € V.., then, for all F € F?,

(Bnp)u]r(z) =0 for a.e. x € F.
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Heuristic derivation |l

m Let V), := P’C}’(’ﬁ,,), k>1

m Our starting point is the (consistent) extension of a to Vi, X Vj,,

aéo)(v,wh) = /Q {;wwh + (B-th)wh} +/ (ﬂ.n)evwh

o0

We mimic L2-coercivity at the discrete level by introducing additional
consistent terms that vanish when we plug u into the first argument
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Heuristic derivation Il

m Element-by-element IBP yields, for all v, € V},,
ay (vn, vp) :/ {MU;QHr(ﬂ'thh)vh}Jr/ (80)%v
/,uvh+ Z / (B-Vop) vth/ (Bn)®v}

TETh
-/ it 3 | 565+ [ e
/Avh + T; / (Bnr)vp + /89(5'11)@@;217

where we have used A :=p — 1V-3

m Let us focus on the boundary terms
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Heuristic derivation IV

m Using the continuity of (8:nr) across all F' € F},

1 2 _ 1 ng)v? 1 n)vs
Z/:)Ti(‘d.nﬂ?/h’_ Z /172(/6 F)vp] + Z /Fg(ﬁ )i

TeT, " FeF} FeF}

m For all f,i 5 F =011 N1y, v; = vy

1, i € {1,2}, it holds

(07— 1) = 3 (01— v2)(or +v2) = [en] fun}

N

SleAl =
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Heuristic derivation V

m As a result,

a (vp,vp) = /Avth > / Bnp)[on]{vn}

FeF}

+ > / vh+/m(/3~n)9vi,

FeF}

m Combining the two rightmost terms, we arrive at

azo)(yh,vh):/QAv%—l— Z / Bnp)[vn]{vn} —|—/QQ%|ﬁ.n|’U;21

FeFi

m The boxed term is nondefinite
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Heuristic derivation VI

m A natural idea is to modify ago) as follows:
at(v,wy) = / {uvwh+ (6'th)wh} +/ (8-n)%vwy,
Q a0
- % [ anluw)

FeF)
m The highlighted term is consistent since u € V, implies
(Bup)[u]r(z) =0 for a.e. z € F

m Moreover, it ensures LQ—coercivity since, this time,

1
ast (v, vp) = / Av} +/ 5\6-n|v,21 Yoy, € Vy,
Q a0
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Heuristic derivation VII

"

/ {,Lwh’wh + (8:Vhvn) wh} / 1) vpwp

> [ Bur)wlgund —

F\’Ef7

Figure: Stencil of the different terms
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Heuristic derivation VIII

1 _
lollZ: == 7 Hlvll7eq) + /695|/3~n|u2, 7o 1= {max (||| oo (), Lg)} !

Lemma (Consistency and discrete coercivity)

The discrete bilinear form a$' satisfies the following properties:

(i) Consistency, i.e., assuming u € Vi,
ah U, vp,) / fon Yon € Vi;

(ii) Coercivity on Vj, with Cst, := min(1, 7o),

Yo € Vi, a%f(’Uh,Uh) > Osta‘”vhmgf'
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Error estimate |

Lemma (Boundedness)
It holds

V(v,wn) € Vin X Vi, af (v, wn) < Conallvllet, lwnllce,

with Cypna independent of h and of i and 3, and with (3. := ||ﬁ||[L<x,(Q)]d,

27 —1 2
o2 . = ol + > 7ellB-Vollizy + D, Bzt IvlF2om)-
TETh TETh
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Error estimate Il

Find up € V, s.t. aﬁf(uh,vh) = / fup, for all vy, € V), (H;’lf)
Q

Theorem (Error estimate)

Let u solve (I) and let uy, solve (II$Y) with Vi, = P5(Ty,), k > 1. Then,
it holds,

_ <C inf Ju-
o~ unlles < C_inf ffu =yl

with C' independent of h and depending on the data only via the factor

C;; = {min(1, Tcuo)}_l.
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Error estimate Il

Corollary (Convergence rate for smooth solutions)

Assume u € H*1(Q). Then, it holds
Ju — unlles < Cuh®,

with Cy, = C|[ul| gr+1(q) and C independent of h and depending on the
data only through the factor {min(1, 7.p)} .

Proof.
k

It suffices to let y, = m7u in the error estimate and use the
approximation properties of the sequence of discrete spaces (Vj,)pew. [
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Error estimate 1V

m This estimate is suboptimal by % power of h

m Indeed, in the inequalities

inf — < |lu— <C inf —
Jint u = gnler <l = unller <€ inf = gl

the upper bound converges more slowly than the lower bound

m Also bothering: no convergence for FV (k = 0)!

_ 1
ol =7 ol + [ 1B,
oN

oz + Y 7ellB-VollZaer + Y meBehi 10ll72r):
TETh TeTh

ol . -
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Numerical fluxes |

a%f(v,wh) = /Q{/wwh + (ﬁ.th)wh} + /ém(ﬁ.n)evwh
- % [ Guelltund

FeF;

- : cf
Lemma (Equivalent expression for af')

For all (v,wp) € Vip, X Vi, it holds

ait(wun) = [ {( = V:Bpoun = (5.0}
+ /a Q(ﬂ-n)%thr > /F (Bnp) o} ws].

FER]
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Numerical fluxes Il

m IBP of the advective term leads to
cf _
it (wen) = [ {(u=98)0wn — v(8:T )}
Q

+ Z !/(;T(jg-llT)"l,”wh-i-/a (8-n)Pvwy,

TET, Q

= /F (Bnp) o] fun }

FeF}

m Exploiting the continuity of 8-nr we obtain

Z /OT(/ﬁ.ﬂT)’Uwh = Z /F(ﬂ.nF)[[vwh]]—F Z /F(g.n)vwh

TeTh FeF} FeF}

68 /160



Numerical fluxes Il

m To conclude we use the magic formula
[vwr] = viwy — vows

= %(vl —vg)(wy + we) + %(’Ul + o) (w1 — wo)

[olfwn} + fo}[wal,

where v; := v|r, and w; := w7, for i € {1,2}
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Numerical fluxes IV

m We now consider a point of view closer to finite volumes
m Llet T €7, and £ € PH(T)
m For a set S C (2, denote by xg the characteristic function of S s.t.

1 ifzes,
xs(z) =

0 otherwise
m With the goal of setting vj, = &xr in (II5F) observe that

[ExT] = er,ré with €7, F ‘= N70F
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Numerical fluxes V

it (anson) = [ {0 = T B)unen — (55}

Q
[ enun+ 5 [ Gne)gmdlo]

FeF}

m Letting vy, = {xr in the alternative form for ap, (cf. above) we infer

ah(uh,SXT)=/T{(ufv-ﬁ)uhffuh(ﬁ.vg)}+ Z ET’F./Fd)F(uh)g:/ng’

FEFr

where centered numerical flux ¢z (uy) given by

dr(up) = (Bnp)fun} if FeF,
T B0)P i Fe R
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Numerical fluxes VI

m For |7 = 1 we recover the usual FV local conservation: VT € Ty,

/T(M—Vﬂ)uh-F > /FGT,F¢F(Uh)=/Tf

FeFr

m We next modify the numerical flux to recover quasi-optimality
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Upwinding |

m The error estimate for centered fluxes is suboptimal

m This can be improved by tightening stability with a least-square
penalization of interface jumps

m In terms of fluxes, this approach amounts to introducing upwind

m As a side benefit, we can estimate the advective derivative error
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Upwinding Il

m We consider the new bilinear form

Opywp) 1= a§ (vp, wh) + Sp(vn, w),

G

where, for 77 > 0, we have introduced the stabilization bilinear form

s(onwn) = 30 [ Fipur|follon]

FeF]
m This term is consistent under the regularity assumption since

(Bnp)u]l =0 VF € Fi
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Upwinding Il

- : : f
m More explicity, recalling the expression of af;,

™ (Un, wh) /{uvhthr B-Vpvp wh} / 1) Zvpwy
o0

-y / (Bnp)[vn] {wn} + Z/ |8-0F|[vn][wn]

FGJ: FeFy

m Or, after element-by-element IBP,
a‘}ipw(’l}hy’wh) = / {(u \ %2 ﬂ)vhwh — Vp, ﬂ Vhwh } / thh
+ 3 / o) {onwn] + / 7\ 5.1 [on] [eon]

Fe]—' FeFy
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Upwinding IV

/{uvhthr(B Vhvn) wh} / 1) vpwy

> [ Bae)lund,

FE}'

> [ 3ipnriio o]

FE]-'

Figure: Stencil of the different terms
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Upwinding V

Find u, € Vi st ap”" (up, vp) = / fup forall v, €V, (IL,P™)
Q
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Upwinding VI

Bnp|[v]?

FollZs = Roll + Y /

FeF}

Lemma (Consistency and discrete coercivity)

upw

The discrete bilinear form a,"" satisfies the following properties:

(i) Consistency, i.e., assuming u € Vi,
ap™" (u,vp) = / fon Yop, € Vh,
Q

(it) Coercivity on Vi, with Csta = min(1, 7cpo),

V’Uh S Vh, upw('Uh7 Uh) > CStamvh "|uwb
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Numerical fluxes

m Proceeding as for a§' we infer for all T € Ty,

an(un, €xT) :‘/T{(;L*V-B)uh£fuh(ﬂ-V£)}+ > ET,F/F¢F(Uh)§=/Tf§,

FeFr

where, this time, the numerical flux is s.t.

Bupfun} + 2| np|lun] if Fe Fi,

Prlun) = {(ﬁ-n)@uh if FeFp

m The choice 7 = 1 leads to the classical upwind fluxes

B B-npuz if F e .7-',"1,
¢F(Uh) o {(ﬁ.n)@uh if I e ]:;:
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Error estimates based on inf-sup stability |

m We define the stronger norm (5. := ||B|l;1(q))¢)

IolZa = Nollaws + D B hellB-VollZa )
TeTh

m We assume that the model is well-resolved and that reaction is not
dominant

h < 567—c
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Error estimates based on inf-sup stability Il

upw

Lemma (Discrete inf-sup condition for a;,

There is C!., > 0, independent of h, u, and 3, s.t.

Yop € Vi, C!

sta

Cstallvnlluwy <S:=  sup  ——mr—=
wneVi {0} [[wnluws

with Cy, = min(1, 7.u0) < 1 denoting the L*-coercivity constant.
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Error estimates based on inf-sup stability Il

Lemma (Boundedness)
It holds

V(v,wn) € Van X Vi, 1" (v, wn)] < Conallvlluws,«|

|wh[fuws,

with Cynq independent of h, i, and B and

lol2ug v = Nol2ug + D Be (h%lllvllizm + IIvIIifz(aT)) :
TETh
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Error estimates based on inf-sup stability IV

Theorem (Error estimate)

Let u solve (II) and let uy, solve (IL;"™) where V3, = PX(T;,) with k > 0.
Then, it holds

lu — unlluwg < C inf Jlu — yalluws,s
Yn€Vh

with C' independent of h and depending on the data only through the
factor {min(1, 7cp)} L.

Corollary (Convergence rate for smooth solutions)
Assume u € H**(Q). Then, it holds
llu — unlluws < Cub*2,

with Cy, = C|[ul| gr+1(qy and C independent of h and depending on the
data only through the factor {min(1, 7.pg)} .
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Part [l
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Setting |

m For f € L?(Q2) we consider the model problem for viscous terms

—Au=f inQ,
u=0 on 09,

m The weak formulation reads with V := H; (),

Find u € V s.t. a(u,v) = / fvforallveV, (IT)
Q

where

a(u,v) ::/Vu~Vv
Q
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Setting Il

m The well-posedness of (IT) hinges on Poincaré’s inequality,
Vo€ Hy(Q), [vllr2) < CalVollLz(aye

m Indeed, a classical result is the coercivity of a,
Vo€ HI(Q), a(v,v) > ——|[o|?
0 ) ] +Cs22 HY(Q)

Lemma (Continuity of the potential and of the diffusive flux)
Letting [v]r = {v}r = v for all F € F?, it holds

[u] =0  VF € F,
[Vulnp =0  VF € Fi.
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Setting Il

Assumption (Regularity of exact solution and space V)

We assume for the exact solution the regularity u € V, with

V.=V nE(9)]

This implies, in particular, that the traces of both u and Vu-ng are
square-integrable. We set

Vin = Vi + Vp.
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Roadmap for the design of dG methods

Extend the continuous bilinear form to Vi, x V3, by replacing

V(—Vh

Check for

m Remove bothering terms in a consistent way
m If necessary, tighten stability by penalizing jumps

If things have been properly done, is preserved
Prove by appropriately selecting |||
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Symmetric Interior Penalty: Heuristic derivation |

m We derive a dG method based on the space

Vi =P, k>1

m For all (v,wy,) € Vi X V3, we set, replacing V <+ V,,,

aEIO)(anh) ii/ﬂvhv'vhwh = Z /TVU~th

TETh
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Consistency |

m Integrating by parts element-by-element we arrive at

ago (v,wp) = Z / (Av)wy, + Z/ (Vonr)wy,

TET TeTh

m The second term in the RHS can be reformulated as follows:

Z (Vz ‘nr)w, = Z /[[ (Vav)wn] nr + Z / (Vonp)w

TeT;, ” 9T FeF} FeFD
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Consistency |l

m Moreover, letting a; = (Vo)

T, 1 €{1,2},

'
i

[(Vhv)wn] = aiby — azbs
= (a1 + az)(by — ba) + (a1 — az) 3 (by + bo)
= {Vrv}wn] + [Vrv]{ws}.

m As a result, and accounting also for boundary faces,

Z / (Vonr)w, = Z /{th}} npwn]+ Z /ﬂth]] nrdwn}

TETh FeFy FeF}
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Consistency |l

m In conclusion,

a§f’ (v, wp) Z/ (Av)wy + Z /{{th}} nr[ws]

TeTh FeFy,
+ 3 [ [Vilurgu)
Fe]—‘7

m To check consistency, set v = u. For all wy, € Vj,

(u,wp) /fwh+ > /{{W}} npfws]

FeFn

m Hence, to obtain consistency we modify aglo) as follows:

(v, wp) /th Vywp — Z /{{th} nr[ws]

FeFy
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Symmetry |

m A desirable property is symmetry since

m it simplifies the solution of the linear system
m it is used to prove optimal L? error estimates

m Thus, we consider the following symmetric modification of ag):

aﬁf(v,wh) ::/th~vhwh
Q

— Z /F({{th]}-np[[whﬂ+[[vﬂ{{vhw;,}}-np)

FeFy,
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Symmetry |l

m Element-by-element integration by parts yields

) = — 3 / (Doywn+ 3 /[[v,m e fwnd

TETn FeF)
- Z / [v[{Vrhwp}np
FEFn

m This shows that af® retains consistency since

[Viulpnp =0 for all F € F,
[ulp =0  forall FeFy
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Coercivity |

m For all v, € V}, it holds

a5 (vn, vn) = [ Vionl Pz ayal =2 Y /{thh}} np [vn]

FeF,

m The boxed term is nondefinite

m We further modify a§® as follows: For all (v,wy) € Vi, X Vp,,

a’zip(vawh) = azs(vvwh) + Sh(’U, wh)7

with the stabilization bilinear form

n (v, wn) / [o][wn]

FE]-_
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Coercivity |l

m We aim at asserting coercivity in the norm

N|=

Ve Van,  ollip == (IVn0lEaaye + 10B) 7

with jump seminorm

1
olf = Ellﬂvﬂllizm

FeFy

m We anticipate the following discrete Poincaré’s inequality:

[Yon € Vay Ilonlzze) < oalonllsips]

with oo > 0 is independent of h
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Coercivity Il

The choice for sy, is justified by the following result.

Lemma (Bound on consistency and symmetry terms)

For all (v, wp) € Vip, X Vi,

1
2
= (Z > hF||VU|T'HF|i2(F)) w1

TEeT), FEFT

> [ AVkohnelu]

FeFy

Moreover, if v = vy, € V},,

1
< Cu NG |V honliz2@)elvnla-

> [ AVionhnrlun]

FeFy
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Coercivity IV

Lemma (Discrete coercivity)

For all n > 1 := CZ Ny it holds

Yon € Vi, a3 (vn,vn) > CyllonllZ,,

with Cy) := (n — C2Na)(1+n)~L.
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Coercivity V

a;ip(v,wh)z Lvhv~vhwh7 Z /F ({Vh’u}-np[[whﬂ+[[’1)ﬂ{{vh'wh}-np)

FeFy,

n
+ 3 E/F[[vuuwhﬂ,

FEF,

m Using the bound on consistency and symmetry terms,
a5 (vn,vn) = [ Vaonlltz e — 200Ny IV avnllz2 qyalvnls + nlvnl3

m Forall € RY, > 2% z,y €R, it holds
2
2 o N—5", 5 2
z° —2Bxy + > — (" +
By +ny” = 1+77( ¥
mlet 5= CtrNé/z, r = ||Vaonllp2(@)e, ¥ = [vnls to conclude

100/ 160



Coercivity VI

Lemma (Boundedness)

There is Cynq, independent of h, s.t.
V(v,wp) € Vin x Vi, a3 (v, wn) < Conallvllsip, lwn llsip-

where

1
3
lollsip, := (lllvlllfip+ > hTIIWT~nT|2Lz<aT>>

1‘6,7—}1
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Basic energy error estimate |

Find u, € Vj, s.t. azip(uh,vh) = / fup, for all v, €'V,
Q

Theorem (Energy error estimate)

Assume u € Vi and n > 1. Then, there is C, independent of h, s.t.

v = unllsip < € inf, Jlu—vfsp,s.
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Basic energy error estimate ||

Corollary (Convergence rate in ||-||sip-norm)

Additionally assume u € H**1(Q). Then, it holds
llw — unllsip < Cuh*,

with C, = C||ul| gr+1(q) and C independent of h.

m The above estimate shows that convergence requires k > 1

m For an extension to the lowest-order case, cf. [Di Pietro, 2012]
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L2-norm error estimate |

Using the broken Poincaré inequality of [Brenner, 2004] one can infer
lu —unllL2(0) < ohCuh*

This estimate is suboptimal by one power in h

m An optimal estimate can be recovered exploiting symmetry

Further regularity for the problem needs to be assumed
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L2-norm error estimate |l

Definition (Elliptic regularity)
Elliptic regularity holds true for the model problem (II) if there is Cey,

only depending on €2, s.t., for all 1) € L?(12), the solution to the problem,
Find ¢ € H}(Q) s.t. a(¢,v) /wv for all v € H} (),
is in V. and satisfies

I<IlE2() < Cenll¥llz>(9)-

[Elliptic regularity holds, e.g., if the domain € is convex [Grisvard, 1992]J
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L2-norm error estimate |l

Theorem (L?-norm error estimate)

Let u € V, solve (II) and assume elliptic regularity. Then, there is C,
independent of h, s.t.

lw —unllz2(@) < Chllu — upllsip,+-

Corollary (Convergence rate in ||-|| 12 (q)-norm)

Additionally assume u € H**1(2). Then, it holds
[l — uhHLz(Q) < Cuhk_H.

with C, = C||ul| gr+1(q) and C independent of h.
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Liftings |

m Liftings map jumps onto vector-valued functions defined on elements
m Liftings play a key role in several developments

m Flux and mixed formulations
m Computable lower bound for n
m Convergence for nonlinear problems

m Key application: dG methods for the Navier—Stokes problem
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Liftings I

m For an integer [ > 0, we define the (local) lifting operator
v+ LP(F) — [Py(Th)]Y,

as follows: For all ¢ € L?(F),

/rlp(w)-m Z/HTh}}'HF@ V7 € [PY(Th)]?
Q F

= We observe that supp(r};) = Uper, T
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Liftings Il

m Forall I >0 and v € H*(T3), we define the (global) lifting

Ry, ([o]) = > vi([v]) € Py(Th)]

FeFy

= R} ([v]) maps the jumps of v into a global, vector-valued volumic
contribution which is homogeneous to a gradient
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Discrete gradient |

m For [ > 0, we define the discrete gradient operator
Gj : H'(Th) — [L*(Q))7,

as follows: For all v € H'(Ty),

G (v) == Vo — R ([v])

m The discrete gradient accounts for inter-element and boundary jumps

Lemma (Bound on discrete gradient)

Let 1> 0. For allv € H'(Ty), it holds

1
IGH @) lliz2@ya < (1 + CENo) % lJvlsip-
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Reformulation of a;"

Let | € {k —1,k} and set V}, = P%(Ty,) with k > 1
It holds for all vy, wy, € V4,

a5’ (vn, wn) :/ﬂthhvhwh—/ﬂvhvh-RL([[wh]])—/Qvhwh-Ri([[vh]])

Indeed Vv, € [Pld('Th)]d withl >k —1,

VF € F, /F [V hun}nrlwn] = / Vaon e([wn])

Using the definition of discrete gradients,

a$? (vg, wp) /Gl (vn)-GY (wp) /Rh [on])- Rh([[wh]])
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Reformulation of a;"

m Plugging the above expression into @},

;P (g, wp,) :/Gﬁ(vh)'Glh,(wh)+§Zip(“hvwh)’
Q

with

7o) = 32 7L [ ko] - [ R R QD)

FeFy

m Dropping the negative term in §§Lip leads to the Local Discontinuous
Galerkin (LDG) method of [Cockburn and Shu, 1998]

m This method has the drawback of having a significantly larger stencil
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Reformulation of azlp 1l

/ thh-vhwh
Q

/ (thh R, ([wr])+Vhwn- Rh([[vhﬂ))
> & [ ]

FeFy,

/MmWMmm/%WWWM <
Q Q

Figure: Stencil of the different terms
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Reformulation of azip \Y

Lemma (Coercivity (alternative form))

For all vy, € Vy,,

IGh (R 1Tz (aye + (1 — CocNa)|vnlT < an(vn, vn)-

Observe that
an(vh, va) = |G (vn)f2ye + Mlonl3 = |1 B ([onD) IF2 e

and use the L2-stability of R}, to conclude. O
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Numerical fluxes |

m Let T € Ty, € € PE(T). Element-by-element IBP yields

| se== [ g = [ vuve- /d (Vun)e

m Hence, letting ®p(u) := —Vu-np and ep p = nr-np,
/ Vu-VE + Z ET,F/ Dpr(u) = / fE.
T FeFr F T

m Our goal is to identify a similar local conservation property for uy,
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Numerical fluxes Il

m Using vy, = {xr as test function we obtain

| re=aruen = [ vuve- 3 [ go0xrkariu

FeFr

- Y [ tubrloal+ ¥ [ ol

FeFp FeFr

m Lletl e {k—1,k}. Forall T €T, and all £ € PE(T),
[ i ver 3 e [ one= [ g6
Jr S ” g

with
or(up) == —{Viup}np+ 7h77 [un]
——_— —— F
—_——

consistency
penalty
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Numerical fluxes Il

m Taking £ = 1 we infer the FV flux conservation property,

Z €T,F/F¢F(Uh) Z/Tf

FeFr

Also in the elliptic case local conservation holds on the computational
mesh (as opposed to vertex- or face-centered dual mesh)

117 /160



Part IV
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Stokes

Navier-Stokes
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The Stokes problem |

m We consider the flow of a highly viscous fluid

m The governing Stokes equations read

—Au+Vp=f in Q
Vau=0 in Q,
u=20 on 09,

(P)oa=0
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The Stokes problem Il

m Let L3(Q) := {v € L*(Q) | (v)o =0} and set
U:=[H} VY, P:=L}Q), X:=UxP
m We equip U, P, and X with the following norms

d /2
vl == ||UH[H1(Q)]d = (Z |Uz'||i11(9)>

i=1
lallp = llallz2 (),

1/
(v, a)llx = (ol + llali)
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The Stokes problem Il

m For all (u,p), (v,q) € X let

a(u,v) = /Vqu bvq)::—/ﬂqu, B(v)::/ﬂfm,

m The weak formulation reads: Find (u,p) € X s.t.

a(u,v) + b(v,p) = B(v) Yo e U,
—b(u,q) =0 Vq e P

(Ilg) is a constrained energy minimization problem

m The pressure is the Lagrange multiplier of the incompressibility
constraint
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The Stokes problem IV

m Equivalently, defining the bilinear form S € £L(X x X,R) s.t.

S((u,p), (Uv q)) = a’(u’ U) + b(U,p) - b(u7 Q)a

we can formulate the problem as

’Find (u,p) € X s.t. S((u,p), (v,q)) = B(v) for all (v,q) € X‘
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The Stokes problem V

m Well-posedness hinges on the coercivity of a and on the inf-sup on b

m Equivalently,

it osp 20D S5
a€P\{0} yern\ {0} IVllullgllp
b(v,
Vae P, Balldlr< swp 209
veU\{0} vl
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The Stokes problem VI

Lemma (Surjectivity of the divergence operator from U to P)

Let Q € R%, d > 1, be a connected domain. Then, there exists S > 0
s.t. for all ¢ € P, there isv € U satisfying

g=V-w and PBolvllv < |lqlp.

See, e.g., [Girault and Raviart, 1986]. O
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The Stokes problem VII

Proof of the continuous inf-sup condition

Let ¢ € P and let v € U denote its velocity lifting. The case v =0 is
trivial, so let us suppose v # 0:

lall% = /Q 40 = —b{v, q)

b(w, q)
< lollo
weU\{0} |w||e
_ b(w, q
<87 swp @Dy

wev\{o} lwllu

and the conclusion follows.
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Equal-order discretization |

m For an integer k > 1 define the following spaces:

Un = PETI. Pu=PR(T)NL3(Q), X = Uy x Py

m Discrete pressure-velocity coupling: For all (vp,,qn) € X, set

br(Vh, qr) == —/Q(Vh-vh)Qh + Z /F[[vh]]'nF{{Qh]} =— /; Dj,(vi)qn

Fery,

:/th-th— Z /F{Uh}}'nF[[qh]]’

FeF}

with [ = k and

Dy, (vy) = tr(G},(vn)) = Vivn — tr(R} ([val))
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Equal-order discretization |l

m Extending by, to [H'(T3)]? x H*(T},), consistency is expressed as
Y(v,qn) € U X Py, br(v,qn) = —/ qnV-v,
Q
Y(ona) € Un x B, bu(ena) = [ oV,
Q

since, for all v € U and all ¢ € H'(9),

[v] =0 VFeF,
[qf =0 VFeF
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Equal-order discretization IlI

Lemma (Discrete generalized inf-sup condition)

There is 8 > 0 independent of h s.t. s.t.

where

VQh EP}H

Bligrllp < sup
UhEUh\{O}

by (vn, qn)

|lvnllac

+ ‘Qh|pa

lqn 3 = Z helllgnlllZ2(ry-

FEF,

129 /160



Equal-order discretization IV

m We stabilize the pressure-velocity coupling using the bilinear form

V(pn,an) € Pn, n(pnrn) =Y hF/[[ph]][[Qhﬂ

FEF}

m The discrete counterpart of S is S}, € L(X}, x Xp,R) s.t.

Sh((un, pn)s (Vn, qn)) =
an(un, vn) + bn(vn, pn) — bn(un, qn) + sn(Pn, qn),

where

S
g a, lp (w;, v;)
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Equal-order discretization V

m The discrete problem reads: Find (up,pr) € X s.t.

‘Sh«uh,ph), (vn,qn)) = B(vn)  Y(vn,qn) € Xi ‘ (IIs,p)

m Equivalently: Find (up,pr) € X s.t.

an(un, vn) + bp(vn, pr) = B(vp) Yoy, € Uy,
—bn(un,qn) + su(pn,qn) =0 Van € Py

m This corresponds to a linear system of the form

Ar  Bp| |Uxp| _ |Fy
"B, C,||P.| " |0
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Stability |

m Equip X, with the the following norm:

1(vn, an)lI3 = llonllzer + llanll® + lanl3,

where
d
ol = lvillZ,
i=1

m Owing to partial coercivity,

Y(vn,qn) € Xn, allonllZe + lanl? < Sul(vh, an), (v, qn))
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Stability Il

Lemma (Discrete inf-sup for S},)

There is cs > 0 independent of h s.t., for all (v, qn) € Xp,

Sh((vn, qn), (wp, T
eslloman)ls < sup n((Vn, qn), (WhyTh))
(wn,rn)€Xn\{0} | (wh, ) lls

Consequence of the coercivity of a;, and the discrete inf-sup on by,. O
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Convergence to smooth solutions |

Assumption (Regularity of the exact solution and space X,)

We assume that the exact solution (u,p) is in X, := U, x P, where

U, :=Un[H*(Q)]Y, P, := PN HYQ).

Additionally, we set

Usp := U, + Uy, P.p := P, + P, Xin = Xi + Xp.

Lemma (Jumps of Vu and p across interfaces)

Assume (u,p) € X,. Then,

[Vulnp =0 and [p]=0 VF € F}.
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Convergence to smooth solutions |l

Lemma (Consistency)

Assume that (u,p) € X,. Then,

Sn((u,p), (v, qn)) = /Qf'vh V(Vh, qn) € Xp.
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Convergence to smooth solutions |ll

m We have proved an inf-sup condition for S},
m It remains to investigate the boundedness of S},
m Defining the augmented norm

(v, D) zto = (v, Dlzot D, bl Volrnr|iz@n+ D hrllallizor,
TET, TET,

for all V(v, q) € Xup, (wp,r) € Xp,, with Cypnq independent of h,

| Sh((0,9), (wn, 7)) < Conall(v, @)lsto, Nwn, ) lsto
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Convergence to smooth solutions IV

Theorem (||-||sto-norm error estimate and convergence rate)

Then, there is C, independent of h, s.t.

(e =un,p—pr)llsto <C inf [[(u—vp,p — qn)llsto,s-
(vn,qn)E€Xn

Moreover, if (u,p) € [H*1(Q)]4 x H*(Q),
l(w = wn, p = pr)llsto < Cuph®,

with Cyp = C (lullzre+1 @y + 1Pl e () -
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Convergence to minimal regularity solutions |

Theorem (Convergence to minimal regularity solutions)
Let (wy, ppe) := ((wh,pn))nen solve (Ils ) on the admissible mesh
sequence T3,. Then, as h — 0,
up —u  strongly in [L?(Q)]4,
Gn(up) — Vu  strongly in [L*(€)]%,
Vyup — Vu  strongly in [L?(Q)]%4,
|unly — 0,
pn —p  strongly in L*(),
[pnlp — 0,

where (u,p) € X is the unique solution to (Ilg).
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Convergence to minimal regularity solutions

Lemma (A priori estimate)

The problem (Ilg 1) is well-posed with the following a priori estimate:

o2
| (un, pr)lls < g”fH[Lz(Q)]‘L

m A priori estimate + discrete Rellich theorem [DP & Ern, 10]:
convergence of (ug,py) up to a subsequence

m Test using regular functions and conclude using density that the
limit solves (Ilg)

m Use continuous uniqueness to infer that the whole sequence
converges

m Use partial coercivity to prove convergence of the gradients
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The incompressible Navier—Stokes problem |

m The Navier-Stokes problem reads

—vAu+ (uV)u+Vp=f inQ,
Vau=0 1in{,
u=0 on 01,
(P)a=0

m The nonlinear advection term is the physical source of turbulence

m Uniqueness holds only under a suitable small data assumption
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The incompressible Navier—Stokes problem |l

m We introduce the trilinear form ¢ € L(U x U x U,R) is such that

t(w,u,v) = /Q(qu)m:/Q‘Ed: w; (05u;)v;.

,j=1

m The weak formulation reads: Find (u,p) € X s.t., for all (v,q) € X,

| va(u,v) + b(v,p) + t(u, u,v) — b(u,q) = B(v)| (TTxs)
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The incompressible Navier—Stokes problem Il

Lemma (Skew-symmetry of trilinear form)
Letting

t'(w,u,v) :== t(w,u,v) + % / (Vw)u-v,
Q

it holds, for all w € U,

‘Vv eU, t'(w,v,v) = 0. ‘

Moreover, ifw € V :={v e U | V-v =0},

Yo e U, t(w,v,v) = 0.
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The incompressible Navier—Stokes problem [V

m Let w € U. We observe that, for all v € U,

Hw, v, v)+ = / (Vw)lol? = / Lowpp+l / (Vw)of? = / 19 (wll?),
2 Ja Q2 2 Jq Q 2

m The divergence theorem yields

Hw,v,0) + / (Vw)lol? = & / (wn)[of? = 0,
2 Ja 2 Joq

since (w-n) vanishes on 99 thus proving the first point

m The second point is an immediate consequence of the first
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The incompressible Navier—Stokes problem V

m As a consequence, letting (v, q) = (u,p) in (IIxg),

V|| Vull,2 gy :/Qf'%

where we have used V-u =0

m This shows that convection does not influence energy balance
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Design of the discrete trilinear form |

m Our starting point is, for wy,, up, vy € Uy,

1
tgbo) (wh,uh,vh) = / (wh~thh)ovh -+ 5 / (Vh'wh)uhwh
Q Q
[ Skew—symmetry: For all wy, vy, € Uy, element-wise IBP yields,

5 s on o) = 5 S / [wnlnefonond+ 3 / fwnpnrlon]-fonk

FEJ-'; FeF}

m We modify t%o) as

tn(wh, wn, vp) = /Q(wh'VhUh)'Uh - 1 /{{u'h}} np[un]-{on}
+3 [ (Trwn) o) - 5 FZF [ lnkenr oy
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Design of the discrete trilinear form |l

Lemma (Skew-symmetry of discrete trilinear form)

For all wy, € Uy, it holds

Yo, € Uy, th(Wh, v, vh) = 0.
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Design of the discrete trilinear form Il

m Let

Nu((unspn), (v, qn)) =
vap(un, vn) + bn(vn, pr) — bn(un, qn) + tn(un, wn, vp)

m The discrete problem reads: Find (up,pp) € X}, s.t.

| Nu((unpn)s (vn,@0) = Blon)  Y(ongn) € Xn | (TInsa)

m The existence of a solution to (IIxg ) can be proved by a
topological degree argument
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A priori estimate

Lemma (A priori estimate)

There are c1, co independent of h such that

(un,pr)lls < el fllizacye + c2ll FIFa e

Also in this case, this a priori estimate is instrumental to apply the
discrete Rellich theorem of [DP & Ern, 10]
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Convergence to minimal regularity solutions

Theorem (Convergence to minimal regularity solutions)
Let (up, pat) = ((un,pn))nen solve (Ilns.n) on the admissible mesh
sequence Ty,. Then, as h — 0 and up to a subsequence,
up —u  strongly in [L?(Q)]4,
Ghn(up) — Vu  strongly in [L*(€)]%4,
Viuy — Vu  strongly in [L?(Q)]%9,
|urly — 0,
Ph—D weakly in L?(Q),

|ph|p — 0.

Moreover, under the small data condition, the whole sequence converges.
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Numerical validation |

m Let Q =(-0.5,1.5) x (0,2)
m We consider Kovasznay's solution

)

u=1-—e cos(2mxs),
1
Uy = —56”1 sin(2mx2),
1 ~
p= —56”1 cos(2mze) — P,
with p ~ —0.920735694, v = % and f=0

m 73 is a family of uniformly refined triuangular meshes, with h
ranging from 0.5 down to 0.03125
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Numerical validation Il

h llenullip2ne  order llenpllz() order llerlls order
ho 8.87¢ — 01 - 1.62e + 00 - 1.19e + 01 -
ho/2 2.3%9e — 01 1.89 6.11e—01 141 7.26e+00 0.71
ho/4 59.94e — 02 2.01 20le—01 1.60 3.68¢+00 0.98
ho/g 1.59e — 02 1.90 7.40e—02 144 185400 0.99
ho/16 4.17e — 03 1.93 3.14e—02 1.23 9.25e—01 1.00
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A variation with a simple physical interpretation |

ou+ V-(—vVu+ F(u,p)) = f, in Q,
V=0, in Q,
u =0, on 09,

=
Q

Fij(u,p) := usuj + pdi;
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A variation with a simple physical interpretation |

m Let F € Fi, P € F and define
Uy = UNp, U = UTR
m Restricting the problem to the normal direction we have

2

758[[) + 8IUV = O7

C

atul/ + 8x(u12/ +P) = 07
Opur + Oz (upus) =0

h

m To recover a hyperbolic problem we add an artificial compressibility
term

m The inviscid flux can be obtained as the solution associated Riemann
problem with initial datum (uZ,pZ) (up,,p, ) at P
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A variation with a simple physical interpretation Ill

centered wave

contact discontinuity
centered wave

Figure: Structure of the Riemann problem.
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A variation with a simple physical interpretation |V

m The exact solution can be found using the Riemann invariants
(rarefactions) and the Rankine-Hugoniot jump conditions (shocks)

m Following a similar procedure, it is possible to write the Riemann
problem associated to the Stokes equations

m Let (u*,p*) be the solution We define the inviscid flux as

F(ul,piiuy,pp) = F(u®,p*) = wju} + p*dij,
a(utapZ/u}:yp}:) =u’.

m In the Stokes case, an explicit expression is available for the fluxes
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Numerical Fluxes for the Linearized Problems

m We introduce the pressure flux p = p* so that (@, p) = (u*,p*)

m In the Stokes case we obtain

. h
= fup} + TzﬂthnF’

&

p={pn} + 5 —[un]nr
2h

1

m Take ¢ = 2 and compare with the numerical fluxes for the method
we have analyzed!
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