Modélisation et simulation de la cavitation

Eric Goncalves

ENSMA, institut Pprime

Ecole de Mécanique des Fluides Numériques MFN 2015, 1-6 juin 2015

Eric Goncalves

Modélisation et simulation de la cavitation

Plan de la présentation

Plan

- Introduction et problématique
- 2 Equations compressibles 1-fluide
- Lois d'état et modèles de cavitation
- Schémas numériques
- Modèles de turbulence RANS
- Modèles de paroi
- O Equations 1-fluide filtrées
- Cavitation non isotherme
- Simulations 3D turbomachines
- 🛈 Mots de la fin

Changement de phase

Transition de phase liquide-vapeur due à une forte dépression.Dans l'eau, phénomène quasi isotherme.

Eric Goncalves

Modélisation et simulation de la cavitation

물 제 문 제

Conséquences sur les machines hydrauliques

- Chutes de performance
- Instabilités hydrodynamiques
- Vibration
- Erosion
- => Etude numérique pour améliorer la compréhension et la modélisation

Cavitation par poche en Venturi ou hydrofoil

Eric Goncalves

Modélisation et simulation de la cavitation

Le phénomène de cavitation

Propulsion spatiale - turbopompe

- Cavitation non isotherme, LH2 et Lox en cryogénie
- Instabilités, vibrations
- Chute de performance

Cavitation dans les vortex et zones cisaillées

Le phénomène de cavitation

Cavitation par bulles

Etude de la bulle isolée - sonoluminescence

くロン くぼう くほう くほう

Eric Goncalves

Modélisation et simulation de la cavitation

Caractéristiques des écoulements

- Diphasique avec changement de phase liquide/vapeur
- Thermodynamique hors équilibre, métastabilité
- Sarge spectre d'échelles de structures diphasiques
- Interaction turbulence / cavitation, petites échelles
- Forte compressibilité du mélange (chute de la vitesse du son)
- Effet de compressibilité sur la turbulence
- Grand ratio ρ_I/ρ_v
- 🗿 Fluide réel thermosensible, chemin non isotherme
- Implosion violente de bulles, milieu confiné, propagation d'ondes
- Physique tridimensionnelle, grands nombres de Reynolds, géométrie complexe

Remarque : pas de DNS, bases de données expérimentales faibles

물 이 가 물 이 .

Pression négative - chute drastique de la vitesse du son

E

(日) (문) (문) (문)

Les écoulements cavitants

Instabilités de poche de cavitation

Eric Goncalves

Modélisation et simulation de la cavitation

Conséquence néfaste : l'érosion de cavitation

Eric Goncalves

Modélisation et simulation de la cavitation

Trois champs d'étude

- Modélisation diphasique et thermodynamique
 - Modèles à suivi d'interface (VOF) / Modèles moyennés
 - Ø Modèles 2-fluide / Modèles 1-fluide / Modèles hybrides
 - S Thermodynamique en équilibre / déséquilibre (métastabilité)
 - Loi d'état des phases pures
- Effets visqueux et modélisation de la turbulence
 - DNS ou pseudo-DNS
 - ORANS / LES ou méthodes hybrides
 - Soussinesq / modèle non linéaire / RSM
- Méthodes numériques
 - O Code incompressible étendu / code compressible préconditionné
 - Phase implicite et efficacité
 - Schémas numériques, solveur de Riemann
 - Equation non conservative, traitement terme source

Quelle est la bonne stratégie pour simuler la cavitation?

Opposition marquée dans la littérature

- de la DNS bulle isolée aux calculs Fluent de turbomachines
- modèles bi-fluide destinés à des géométries simples (non visqueuses)
- modèles simples (3, 4 équations) destinés à applications turbulentes et géométries réalistes

Choix => modèles simples

- Modèles moyennés au sens diphasique et turbulence (RANS)
- Ø Modèle de mélange homogène + ou en équilibre thermodynamique
- Sois d'état pour fermer le système ou transport taux de vide
- Solveur compressible avec préconditionnement bas Mach
- Modèles de turbulence Boussinesq et hybride RANS/LES

Equations moyennées

Eric Goncalves

Modélisation et simulation de la cavitation

13/122

《日》 《圖》 《圖》 《圖》

Lois de conservation

Volume $\mathcal{V}(t)$ occupés par deux phases différentes 1 et 2. Volumes $\mathcal{V}_1(t)$ et $\mathcal{V}_2(t)$, délimités par des surfaces $a_1(t)$ et $a_2(t)$. Surface $a_i(t)$ séparant les deux phases (interface à travers laquelle auront lieu les échanges entre phases).

$$\begin{aligned} \frac{d}{dt} \int_{\mathcal{V}_{1}(t)} \rho_{1} \, d\mathcal{V} + \frac{d}{dt} \int_{\mathcal{V}_{2}(t)} \rho_{2} \, d\mathcal{V} &= 0 \\ \frac{d}{dt} \int_{\mathcal{V}_{1}(t)} \rho_{1} v_{1} \, d\mathcal{V} + \frac{d}{dt} \int_{\mathcal{V}_{2}(t)} \rho_{2} v_{2} \, d\mathcal{V} &= \int_{\mathcal{V}_{1}(t)} \rho_{1} F_{1} \, d\mathcal{V} + \int_{\mathcal{V}_{2}(t)} \rho_{2} F_{2} \, d\mathcal{V} \\ &+ \int_{a_{1}(t)} \mathbb{T}_{1.n_{1}} \, dS + \int_{a_{2}(t)} \mathbb{T}_{2.n_{2}} \, dS + \int_{c(t)} \sigma \, n \, dl \\ \frac{d}{dt} \int_{\mathcal{V}_{1}(t)} \rho_{1} \left(e_{1} + \frac{1}{2} v_{1}^{2} \right) \, d\mathcal{V} &+ \frac{d}{dt} \int_{\mathcal{V}_{2}(t)} \rho_{2} \left(e_{2} + \frac{1}{2} v_{2}^{2} \right) \, d\mathcal{V} = \int_{\mathcal{V}_{1}(t)} \rho_{1} F_{1.v_{1}} \, d\mathcal{V} \\ &+ \int_{\mathcal{V}_{2}(t)} \rho_{2} F_{2.v_{2}} \, d\mathcal{V} &+ \int_{a_{1}(t)} (\mathbb{T}_{1.n_{1}}) \cdot v_{1} \, dS + \int_{a_{2}(t)} (\mathbb{T}_{2.n_{2}}) \cdot v_{2} \, dS \\ &+ \int_{c(t)} \sigma \, n.v_{i} \, dl - \int_{a_{1}(t)} q_{1.n_{1}} \, dS - \int_{a_{2}(t)} q_{2.n_{2}} \, dS \end{aligned}$$

où v_i est la vitesse de déplacement d'un point de l'interface.

Eric Goncalves

Lois de conservation phasiques

A partir des bilans intégraux, on écrit les équations locales phasiques k = 1, 2 + les relations de saut à l'interface.

$$\frac{\partial \rho_k}{\partial t} + \operatorname{div}(\rho_k v_k) = 0$$

$$\rho_1(v_1 - v_i) \cdot n_1 + \rho_2(v_2 - v_i) \cdot n_2 = 0$$

$$\frac{\partial(\rho_k v_k)}{\partial t} + \operatorname{div}(\rho_k v_k^2) = \rho_k F_k + \operatorname{div} \mathbb{T}_k$$
$$\dot{m}_1 v_1 + \dot{m}_2 v_2 = \mathbb{T}_1 \cdot n_1 + \mathbb{T}_2 \cdot n_2 + (\nabla_s \cdot n) \sigma n$$

$$\frac{\partial}{\partial t} \left[\rho_k \left(e_k + \frac{1}{2} v_k^2 \right) \right] + \operatorname{div} \left[\rho_k \left(e_k + \frac{1}{2} v_k^2 \right) v_k \right] = \rho_k F_k \cdot v_k + \operatorname{div} \left(\mathbb{T}_k \cdot v_k - q_k \right) \\ \dot{m}_1 \left(e_1 + \frac{1}{2} v_1^2 \right) + \dot{m}_2 \left(e_2 + \frac{1}{2} v_2^2 \right) = \left(\mathbb{T}_1 \cdot n_1 \right) \cdot v_1 + \left(\mathbb{T}_2 \cdot n_2 \right) \cdot v_2 - q_1 \cdot n_1 - q_2 \cdot n_2$$

 $\dot{m}_k = \rho_k (v_k - v_i) . n_k$ est le débit massique par unité de surface de transfert de la phase k vers la phase k'. On a : $\dot{m}_1 + \dot{m}_2 = 0$

Eric Goncalves

Modélisation et simulation de la cavitation

≣ •⁄ ९ २ २ 15/122

Opérateur de moyenne

Moyenne temporelle

Moyenne sur un temps T :

$$\overline{\phi}_k = \frac{1}{\mathrm{T}} \int_{\mathrm{T}} \phi_k(x,\tau) \, d\tau$$

Moyenne sur le temps de présence T_k de la phase k :

$$\overline{\overline{\phi}}_k = \frac{1}{\mathrm{T}_k} \int_{\mathrm{T}_k} \phi_k(\mathbf{x}, \tau) \, d\tau$$

Taux de présence local :
$$\alpha(x, t) = \frac{T_k}{T} = \frac{\overline{\phi}_k}{\overline{\phi}_k}$$

Eric Goncalves

Modélisation et simulation de la cavitation

Moyenne pondérée par la masse (moyenne de Favre)

Pour une variable $ho\phi$, moyenne :

$$\widetilde{\phi_k} = \frac{\overline{\rho_k \phi_k}}{\overline{\rho_k}} = \frac{\overline{\overline{\rho_k \phi_k}}}{\overline{\overline{\rho_k}}} \quad \text{and} \quad \widetilde{\phi} = \frac{\sum \alpha_k \overline{\overline{\rho_k}} \widetilde{\phi_k}}{\sum \alpha_k \overline{\overline{\rho_k}}} = \frac{\sum \overline{\rho_k} \widetilde{\phi_k}}{\sum \overline{\rho_k}}$$

Décomposition des variables

Une partie moyenne et une fluctuation (diphasique et turbulente) :

$$\begin{array}{rcl} \rho_k & = & \overline{\overline{\rho_k}} + \rho'_k, & u_k = \widetilde{u_k} + u''_k, & \phi_k = \widetilde{\phi_k} + \phi''_k\\ \overline{\overline{\rho'_k}} & = & 0 & , & \overline{\overline{\rho_k u''_k}} = 0 & , & \overline{\overline{\rho_k \phi''_k}} = 0 \end{array}$$

くロン くぼう くほう くほう

Equation de la masse moyennée

Point M(x, t), intervalle de temps centré autour de t. On intègre l'équation de la masse locale instantanée de la phase k sur le temps de présence T_k au point x:

$$\int_{T_k(x,t)} \frac{\partial \rho_k}{\partial t} dt + \int_{T_k(x,t)} \operatorname{div} \left(\rho_k v_k \right) dt = 0$$

Du fait de la présence d'interfaces, la permutation des opérateurs de dérivée et d'intégration fait apparaître des termes supplémentaires \rightarrow formes limites de la règle de Leibniz et du thèorème de Gauss.

$$\frac{\partial}{\partial t} \int_{T_k(x,t)} f_k(x,t) dt = \int_{T_k(x,t)} \frac{\partial f_k}{\partial t} dt + \sum_{\text{disc. de}} \frac{1}{|v_i.n_k|} f_k v_i.n_k$$

où Σ porte sur toutes les discontinuités de la fonction f_k , i.e. sur toutes les interfaces passant au point x pendant l'intervalle de temps T.

Eric Goncalves

◆□→ ◆帰→ ◆三→ ◆三→ 三三 少へで

Equation de la masse moyennée

En introduisant l'opérateur de moyenne temporelle, l'équation de bilan de la masse quation devient :

$$\frac{\partial}{\partial t} \left(T_k \overline{\rho_k} \right) + \operatorname{div} \left(T_k \overline{\rho_k v_k} \right) + \sum_{\operatorname{disc.}} \frac{1}{|v_i \cdot n_k|} \rho_k (v_k - v_i) \cdot n_k = 0$$

Ce qui peut s'écrire :

$$\frac{\partial}{\partial t} \left(\alpha_k \overline{\overline{\rho_k}} \right) + \operatorname{div} \left(\alpha_k \overline{\overline{\rho_k v_k}} \right) = \Gamma_k \quad \operatorname{avec} \quad \Gamma_k = -\sum_{\text{disc.}} \frac{\dot{m}_k}{T \mid v_i . n_k \mid}$$

où Γ_k est le taux local de transfert de masse de phase k par unité de volume (échanges de masse par évaporation ou condensation sur l'interface). Il est inconnu \Rightarrow besoin d'une relation de fermeture pour clore le système. On a la relation : $\sum_k \Gamma_k = 0$.

くロン くぼう くほう くほう

Equations de conservation pour la phase k

Conservation de la masse :

$$\frac{\partial \alpha_k \overline{\overline{\rho}}_k}{\partial t} + \operatorname{div}\left(\alpha_k \overline{\overline{\rho}}_k \widetilde{u}_k\right) = \Gamma_k$$

Conservation de la QdM :

$$\frac{\partial \alpha_k \overline{\rho_k u_k}}{\partial t} + \operatorname{div} \left(\alpha_k \overline{\overline{\rho}}_k \widetilde{u}_k \otimes \widetilde{u}_k + P_k \right) = \operatorname{div} \left(\alpha_k (\overline{\overline{\tau}}_k + \tau_k^t) \right) + \mathbb{M}_k$$

Conservation de l'énergie totale :

$$\frac{\partial \alpha_k \overline{\rho}_k \left(\widetilde{E}_k + k_k \right)}{\partial t} + \operatorname{div} \left(\alpha_k \rho_k (\widetilde{E}_k + k_k) \widetilde{u}_k \right) = \operatorname{div} \left(\alpha_k P_k \widetilde{u}_k \right) + \operatorname{div} \left(\alpha_k (\overline{\tau}_k + \tau_k^t) \widetilde{u}_k \right) \\ - \operatorname{div} \left(\alpha_k (\overline{q}_k + q_k^t) \right) + \mathbb{Q}_k$$

Inconnues supplémentaires : tenseur de Reynolds τ_k^t et flux de chaleur turbulent q_k^t

Eric Goncalves

Modélisation et simulation de la cavitation

Quantités de mélange pour le champ moyen

- mixture density and pressure : $\rho_m = \sum \alpha_k \overline{\overline{\rho}}_k$, $P_m = \sum \alpha_k \overline{\overline{P}}_k$
- mixture internal energy : $\rho_m e_m = \sum \alpha_k \overline{\overline{\rho}}_k \widetilde{e}_k$
- mass center velocity : $\rho_m u_{m,i} = \sum \alpha_k \overline{\overline{\rho}}_k \widetilde{u}_{k,i}$
- mixture viscosity : $\mu_m = \sum \alpha_k \overline{\overline{\mu}}_k$
- mixture viscous stress tensor : $\tau_{m,ij} = \sum \alpha_k \overline{\overline{\tau_{k,ij}}}$

• mixture heat flux :
$$q_m = \sum lpha_k \overline{\overline{q_k}}$$

Quantités de mélange pour le champ turbulent

- mixture turbulent kinetic energy : $k_m = \sum \alpha_k k_k = \sum \alpha_k \widetilde{u_{k,i}''^2}/2$
- mixture Reynolds stress tensor : $\tau_{m,ij}^t = -\sum \alpha_k \overline{\rho_k u_{k,i}^{''} u_{k,j}^{''}}$
- mixture eddy viscosity : $\mu_{tm} = \sum \alpha_k \mu_{tk}$
- mixture turbulent heat flux : $q_m^t = \sum lpha_k q_k^t$
- mixture dissipation rate : ε_m , mixture specific dissipation ω_m ...

Eric Goncalves

Equations de conservation

Obtenues en sommant les équations phasiques. Masse du mélange :

$$\frac{\partial \rho_m}{\partial t} + \operatorname{div}\left(\rho_m u_m\right) = 0$$

QdM du mélange :

$$\frac{\partial \rho_m u_m}{\partial t} + \operatorname{div} \left(\rho_m \, u_m \otimes u_m + P_m \right) = \operatorname{div} \left(\tau_m + \tau_m^t \right)$$

Energie totale du mélange :

$$\frac{\partial \rho_m(E_m + k_m)}{\partial t} + \operatorname{div} \left(\rho_m(E_m + k_m)u_m \right) = \operatorname{div} \left(-P_m u_m \right) - \operatorname{div} \left(q_m - q_m^t \right) + \operatorname{div} \left[\left(\tau_m + \tau_m^t \right) u_m \right]$$

Hypothèses : équilibre des vitesses, équilibre thermique, équilibre des pressions, tension de surface négligée.

Eric Goncalves

Modélisation et simulation de la cavitation

Propriétés du système non visqueux

Eric Goncalves

Modélisation et simulation de la cavitation

23/122

医子宫下 医原子

Equations et hypothèses

• Equations d'Euler compressibles écrites pour un mélange (1-fluide)

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$
$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + P)}{\partial x} = 0$$
$$\frac{\partial (\rho E)}{\partial t} + \frac{\partial (\rho u H)}{\partial x} = 0$$

- Modèle de mélange homogène
 Pas de glissement entre les phases : 1 vitesse
- Equilibre thermique et mécanique entre les phases
 1 pression et 1 température. Equilibre complet avec 1 enthalpie libre g = h Ts
- Chaque phase pure est régie par la loi des gaz raides : $P + \gamma P_{\infty} = (\gamma 1) \rho (e e_0)$
- ullet Pour calculer la pression et la temperature ightarrow lois d'état pour le mélange

소리가 소행가 소문가 소문가 ...

Conditions à respecter

• Conditions d'entropie :

Obtenir des états thermodynamiques stables et respect du 2nd principe $d^2s < 0$ ou $d^2e > 0 \rightarrow$ concavité de s(v, e) ou convexité de e

La matrice Hessienne de *e* doit être définie positive

$$\lambda = \frac{\rho}{P} \left(\frac{\partial P}{\partial \rho} \right)_{s} \qquad ; \qquad g = \frac{P}{\rho T^{2}} \left(\frac{\partial T}{\partial s} \right)_{\rho} \qquad ; \qquad \Gamma = \frac{\rho}{T} \left(\frac{\partial T}{\partial \rho} \right)_{s}$$

Conditions de convexité (Menikoff 1989, Perrier 2007)

 $\lambda \ge 0$; $g \ge 0$; $\lambda g - \Gamma^2 \ge 0$

イロト イポト イヨト イヨト

Conditions à respecter

- Conditions sur la vitesse du son dans le mélange c : inégalité à respecter : c_{eq} ≤ c < c_{wallis}
 - Sans transfert de masse et de chaleur
 Vitesse du son de Wood ou Wallis (moyenne harmonique pondérée) :

$$\frac{1}{\rho c_{wallis}^2} = \frac{\alpha}{\rho_v c_v^2} + \frac{1-\alpha}{\rho_l c_l^2}$$

 Avec échange de masse et chaleur en équilibre thermodynamique La vitesse du son c_{eq} est la plus petite possible (Saurel, Petitpas)

イロト イポト イヨト イヨト

Modèle à l'équilibre

Equilibre thermodynamique

- Egalité des pression, température et énergie libre (g = h Ts)
- Implique une relation non linéaire entre Pvap et T (algorithme itératif)

$$\ln(P + P_{\infty}^{l}) = A + \frac{B}{T} + C\ln(T) + D\ln(P + P_{\infty}^{v})$$
$$\frac{dP}{dT}(T) = \frac{\frac{C}{T} - \frac{B}{T^{2}}}{\frac{1}{P + P_{\infty}^{v}} - \frac{D}{P + P_{\infty}^{l}}}$$

ullet lpha calculé par algorithme itératif avec énergie du mélange et ho mélange

$$\rho \mathbf{e} = \alpha \left(\rho_{\mathbf{v}} \mathbf{e}_{\mathbf{v}} - \rho_{l} \mathbf{e}_{l} \right) + \rho_{l} \mathbf{e}_{l} \quad ; \quad \alpha = \frac{\rho - \rho_{l}(T)}{\rho_{\mathbf{v}}(T) - \rho_{l}(T)}$$

• vitesse du son
$$c_{eq}^2 = \frac{h - \left(\frac{\partial \rho e}{\partial \rho}\right)}{\left(\frac{\partial \rho e}{\partial P}\right)_{\rho}}$$

Eric Goncalves

Loi d'état sinus - Delannoy&Kueny 1990

• Taux de vide :
$$\alpha = \frac{\rho - \rho_l^{sat}}{\rho_v^{sat} - \rho_l^{sat}}$$

• Pression : loi sinusoïdale de Delannoy et Kueny

$$P(\alpha) = P_{vap} + \left(\frac{\rho_l^{sat} - \rho_v^{sat}}{2}\right) c_{baro}^2 \operatorname{Arcsin}\left(1 - 2\alpha\right)$$

• Température :
$$T(\rho, h) = \frac{h_l - e_{0_l}}{C_{p_l}} = \frac{h_v - e_{0_v}}{C_{p_v}} = \frac{h - e_0(\alpha)}{C_p(\alpha)}$$

• c_{baro} est un paramètre du modèle => plus petite vitesse du son Pour éviter pression négative $c_{baro} < 1.7$ m/s en eau à 20°.

(日) (周) (王) (王)

Cohérence thermodynamique

Loi sinus - eau froide à 20 °

Eric Goncalves

Modélisation et simulation de la cavitation

Evolution du modèle

loi d'état sinus modifiée

• Taux de vide :
$$\alpha = \frac{\rho - \rho_l^{sat}}{\rho_v^{sat} - \rho_l^{sat}}$$

• Pression : variation linéaire de Pvap avec la température

$$P(\alpha, T) = P_{vap}(T) + \left(\frac{\rho_l^{sat} - \rho_v^{sat}}{2}\right) c_{baro}^2 \operatorname{Arcsin}(1 - 2\alpha)$$
$$P_{vap}(T) = P_{vap}(T_{ref}) + \frac{dP_{vap}}{dT}(T - T_{ref})$$

• Température :
$$T(\rho, h) = \frac{h_l - e_{0_l}}{C_{\rho_l}} = \frac{h_v - e_{0_v}}{C_{\rho_v}} = \frac{h - e_0(\alpha)}{C_{\rho}(\alpha)}$$

• $\frac{dP_{vap}}{dT}$ est une constante évaluée avec une table thermo.

• *c*_{baro} est un paramètre du modèle, ce n'est plus la vitesse du son minimale.

Cohérence thermodynamique

Loi sinus modifiée - fréon R114 à 20 °

Eric Goncalves

Modélisation et simulation de la cavitation

Conditions de convexité pour la loi sinus modifiée

- On introduit c_T , vitesse du son isotherme : $c_T = \frac{c_{baro}^2}{2\sqrt{\alpha(1-\alpha)}}$
- Inégalité à respecter :

$$K_2 - \sqrt{K_2^2 - c_T^4} \le c^2 \le K_2 + \sqrt{K_2^2 - c_T^4}$$

• Existence d'un domaine de convexité, qui dépend de la valeur de cbaro

<i>c_{baro}</i> (m/s)	domaine de convexité
2.61	$\alpha < 0.9$
1.48	$\alpha < 0.8$
0.74	lpha < 0.7

(日) (周) (王) (王)

Raccord des lois d'états des phases pures

• Pression :

$$P(\rho, e, \alpha) = (\gamma(\alpha) - 1)\rho(e - e_0(\alpha)) - \gamma(\alpha)P_{\infty}(\alpha)$$

$$\frac{1}{\gamma(\alpha) - 1} = \frac{\alpha}{\gamma_{\nu} - 1} + \frac{1 - \alpha}{\gamma_{l} - 1}$$

$$\rho e_0(\alpha) = \alpha \rho_{\nu} e_{0\nu} + (1 - \alpha)\rho_{l} e_{0l}$$

$$P_{\infty}(\alpha) = \frac{\gamma(\alpha) - 1}{\gamma(\alpha)} \left[\alpha \frac{\gamma_{\nu}}{\gamma_{\nu} - 1} P_{\infty}^{\nu} + (1 - \alpha) \frac{\gamma_{l}}{\gamma_{l} - 1} P_{\infty}^{l} \right]$$

• Température :
$$T(\rho, h) = \frac{h_l - e_{0_l}}{C_{\rho_l}} = \frac{h_v - e_{0_v}}{C_{\rho_v}} = \frac{h - e_0(\alpha)}{C_{\rho(\alpha)}}$$

Eric Goncalves

《曰》 《聞》 《臣》 《臣》

Mélange de gaz raide (SG)

Propriétés

Vitesse du son

$$C_{1} = \frac{1}{\gamma - 1} + \frac{\rho_{v}h_{v} - \rho_{l}h_{l}}{(\rho_{l} - \rho_{v})\frac{dP_{vop}}{dT}} \left(\alpha \frac{d\rho_{v}}{dT} + (1 - \alpha)\frac{d\rho_{l}}{dT}\right)$$
$$\rho c^{2} = \frac{1}{C_{1}} \left[\frac{\rho_{v}\rho_{l}}{(\rho_{l} - \rho_{v})}(h_{v} - h_{l})\right]$$

 $\frac{dP_{vap}}{dT}$ est une constante évaluée avec une table thermo.

L'inégalité c_{eq} ≤ c < c_{wallis} est bien respectée.
 La convexité de l'énergie interne est bien vérifiée.

イロン イボン イヨン イヨン

Système non visqueux

3 lois de conservation pour le mélange (masse, QdM, énergie) + équation de transport du taux de vide.

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + P)}{\partial x} = 0$$

$$\frac{\partial (\rho E)}{\partial t} + \frac{\partial (\rho u H)}{\partial x} = 0$$

$$\frac{\partial \alpha}{\partial t} + u \frac{\partial \alpha}{\partial x} = \dot{m} = \dot{m}^+ + \dot{m}$$

Splitting du transfert de masse avec contributions liées à l'évaporation et la condensation (termes de production et destruction). Forme implémentée dans tous les codes commerciaux. Formulation empirique pour le terme source. Formulation de Kunz et al. (Computers&Fluids 2000)

$$\dot{m} = \dot{m}^{+} + \dot{m}^{-} = \frac{C^{-}}{\tau} \rho_{v} (1-\alpha) \frac{Min(0, P - P_{vap})}{0.5 \rho_{ref} U_{ref}^{2}} + \frac{C^{+}}{\tau} \rho_{v} \alpha (1-\alpha)^{2}$$

Avec constantes C^+ , C^- et τ un temps caractéristique.

Formulation de Hosangadi & Ahuja (J. Fluid Eng. 2005)

$$\dot{m} = C_{prod} \frac{\rho_v}{\rho_l} (1-\alpha) \frac{\operatorname{Min}\left(0, P - P_{vap}\right)}{0.5\rho_{ref}U_{ref}^2} + C_{des} \frac{\rho_v}{\rho_l} \alpha \frac{\operatorname{Max}\left(0, P - P_{vap}\right)}{0.5\rho_{ref}U_{ref}^2}$$

Cprod, Cdes constantes à calibrer.

소리가 소리가 소문가 소문가 ...
Basée sur l'équation de Rayleigh-Plesset, Schnerr& Sauer 2001

$$\dot{m} = \frac{\rho_I}{\rho} \alpha (1-\alpha) \frac{3}{R} \sqrt{\frac{2}{3} \frac{P_{vap} - P}{\rho_I}} + \frac{\rho_I}{\rho} \alpha (1-\alpha) \frac{3}{R} \sqrt{\frac{2}{3} \frac{P - P_{vap}}{\rho_I}}$$

R la rayon de la bulle, fonction du taux de vide et de la concentration de nuclei par unité de volume liquide η .

Problèmes et questions

- α peut être plus grand que 1 ightarrow introduction de limiteur
- Comportement de la vitesse du son et de l'entropie du mélange?
- Cohérence avec les codes incompressibles : ρ_I et ρ_v sont constants.
 Dans ce cas, α et ρ sont proportionels.
- Comment est calculé la pression dans les codes compressibles ?
- Calibration et domaine de variation des constantes (de 1 à 1 million).

Autre modèle, I.J. Multiphase Flow 2014

Le liquide est supposé à saturation.

3 lois de conservation pour le mélange (masse, QdM et énergie) + taux de vide.

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + P)}{\partial x} = 0$$

$$\frac{\partial (\rho E)}{\partial t} + \frac{\partial (\rho u H)}{\partial x} = 0$$

$$\frac{\partial \alpha}{\partial t} + u \frac{\partial \alpha}{\partial x} = \underbrace{\left(\frac{\rho_l c_l^2 - \rho_v c_v^2}{1 - \alpha} + \frac{\rho_v c_v^2}{\alpha}\right)}_{= K} \frac{\partial u}{\partial x} + \underbrace{\left(\frac{\frac{c_v^2}{\alpha} + \frac{c_l^2}{1 - \alpha}}{\frac{\rho_l c_l^2}{1 - \alpha} + \frac{\rho_v c_v^2}{\alpha}\right)}_{= 1/\rho_l \text{ the interfacial density}} \dot{m}$$

Variation de taux de vide même sans transfert de masse (compressilibité). Une equation d'état est nécessaire pour calculer P et T. + une relation de fermeture du transfert de masse *m*.

Formulation analytique par identification

Equation pour la pression déduite de celle du taux de vide :

$$\frac{\partial P}{\partial t} + u \frac{\partial P}{\partial x} + \rho c_{\text{wallis}}^2 \frac{\partial u}{\partial x} = \frac{c_v^2}{\alpha} (1 - \frac{\rho_v}{\rho_l}) \dot{m}$$

Equation pour la pression déduite de la conservation de la masse :

$$\frac{\partial P}{\partial t} + u \frac{\partial P}{\partial x} + \rho c^2 \frac{\partial u}{\partial x} = 0$$

ldentification des 2 équations avec hypothèse de proportionalité de \dot{m} avec div u

$$\dot{m} = \left[\frac{\rho_l \rho_v}{\rho_l (\rho_l - \rho_v)} \left(1 - \frac{c^2}{c_{wallis}^2}\right)\right] \operatorname{div} u$$

Famille de modèle construite avec diverses lois d'état pour le mélange.

Système à 5 équations

Modèle de Kapila (Phys. Fluids 2001), Saurel (J. Fluid Mech. 2008)

2 équations pour les masses, 2 équations de mélange (QdM et énergie) + $\alpha.$

$$\begin{aligned} \frac{\partial \alpha \rho_{v}}{\partial t} + \operatorname{div} (\alpha \rho_{v} u) &= \dot{m} \\ \frac{\partial (1-\alpha)\rho_{l}}{\partial t} + \operatorname{div} ((1-\alpha)\rho_{l} u) &= -\dot{m} \\ \frac{\partial \rho u}{\partial t} + \operatorname{div} (\rho u \otimes u) + \operatorname{grad} P &= 0 \\ \frac{\partial \rho E}{\partial t} + \operatorname{div} (u(\rho E + P)) &= 0 \\ \frac{\partial \alpha}{\partial t} + u \operatorname{grad} \alpha &= \frac{\alpha (1-\alpha)(\rho_{l}c_{l}^{2} - \rho_{v}c_{v}^{2})}{\alpha \rho_{l}c_{l}^{2} + (1-\alpha)\rho_{v}c_{v}^{2}} \operatorname{div} (u) + \frac{\dot{m}}{\rho_{l}} \\ &+ \frac{\alpha (1-\alpha)}{\alpha \rho_{l}c_{l}^{2} + (1-\alpha)\rho_{v}c_{v}^{2}} \left(\frac{\Gamma_{v}}{\alpha} + \frac{\Gamma_{l}}{1-\alpha}\right) Q \end{aligned}$$

où \dot{m} et Q sont les termes de transfert de masse et de chaleur.

Eric Goncalves

40/122

Termes de transfert

Termes de tansfert \dot{m} et Q fonction des enthalpies libres et des températures des phases pures :

$$\dot{m} =
u
ho(g_l - g_v)$$
 et $Q = H(T_l - T_v)$

où ν et H sont les coefficients de relaxation.

La résolution s'effectue en deux étapes :

- Résolution du système sans transfert. On obtient un champ hydrodynamique à l'équilibre mécanique.
- Q Résolution du système complet avec relaxation de T et g aux interfaces seulement. Les coefficients de relaxation sont pris infinis. Les termes d'échange de masse et de chaleur sont déterminés à partir des équations sur les différences de températures ΔT = T_l T_v et d'enthalpies libres Δg = g_l g_v.

소리가 소리가 소문가 소문가 ...

Schémas numériques

Eric Goncalves

Modélisation et simulation de la cavitation

42/122

Problèmes liés aux méthodes numériques

De nombreux points durs

- Ecoulement mixte compressible / incompressible
- Présence de fronts, d'ondes de choc/détente et d'interfaces
- Gradients de masse volumique, pression et vitesse du son énormes
- Solveur de Riemann, zone proche du vide P et ρ très faibles
- Etat moyen de Roe non unique
- Modèles diphasiques avec équation non conservative et termes sources raides
- Conditions aux limites non reflectives
- Implicitation inefficace

Cas test proposé par Saurel

Tube de 1 m rempli d'un mélange d'eau à T = 355K. Discontinuité initiale de vitesse $u = \pm 2$ m/s à mi-tube. Fraction de gaz initiale $\alpha = 0.01$. $P_{vap} = 51000$ Pa.

Quatre ondes : 2 ondes de détente + 2 fronts d'évaporation. Maillage de 5000 cellules. Pas de temps de 10^{-7} s.

Cas sans transfert de masse

Test de schémas numériques "classiques" : HLLC, VF Roe nc, AUSM+, Jameson-Schmidt-Turkel, Rusanov.

Tous les schémas permettent d'obtenir une solution correcte.

Tube à détente

Cas avec transfert de masse

• Impossible d'obtenir une solution avec les schémas HLLC, AUSM+, VF Roe.

• Seuls les schémas de Jameson et Rusanov fournissent une solution.

Système à 4 équations formulé en 1D

Equation de transport du taux de vide 1D :

$$\frac{\partial \alpha}{\partial t} + u \frac{\partial \alpha}{\partial x} = S$$

Formulation divergence pour l'intégration volumes finis :

$$\frac{\partial \alpha}{\partial t} + \frac{\partial (\alpha u)}{\partial x} = S + \alpha \frac{\partial u}{\partial x}$$
(1)

Formulation conservative basée sur l'intégration de la variable ho lpha selon l'équation :

$$\frac{\partial \rho \alpha}{\partial t} + \frac{\partial (\rho \alpha u)}{\partial x} = \rho S \tag{2}$$

Travaux de Abgrall et Karni : principe de "préservation" de l'interface. Si la vitesse u et la pression P sont uniformes dans l'ecoulement au temps $n\Delta t$, ils doivent le rester au temps $(n + 1)\Delta t$.

Tube à détente avec transfert de masse

Intégration de la formulation (1). Calculs avec schéma de Rusanov.

• Solution correcte en bon accord avec les solutions 2-fluide.

Tube à détente avec transfert de masse

Intégration de la formulation (2). Calculs avec schéma de Rusanov.

Solution numérique oscillante.

Cas 2D compressibles non visqueux

Explosion sous-marine et RMI

Interaction choc-bulle et collapse de bulles

Eric Goncalves

Modélisation et simulation de la cavitation

50/122

Déstabilisation de l'interface

Rusanov ordre 1 (en haut) et Jameson ordre 2 (en bas)

Eric Goncalves

Modélisation et simulation de la cavitation

DEM, Abgrall, J. Comp. Physics 2003

Sur la base de modèle 2-fluide. Résolution améliorée (robustesse + précision) de l'équation de transport des fractions volumiques.

 Partitionnement des phases dans chaque cellule et problèmes de Riemann multiples (monophasique ou diphasique) résolus à l'interface entre 2 cellules.

• Utilisation d'un schéma anti-diffusif au lieu d'un schéma d'ordre 2 limité classique.

Application à une interaction choc/bulle (thèse de Kunkun Tang)

Un choc se propage dans de l'air et impacte une bulle de gaz de R22.

Isovaleur de masse volumique (maillages Quad /Tri raffiné)

Expérience

Schéma ordre 2 limité

Schéma anti-diffusif

Eric Goncalves

Modélisation et simulation de la cavitation

Evolution de la vitesse du son dans l'écoulement

Variation très forte de la vitesse du son (et du Mach) et non monotonie.

Préconditionnement à la Turkel

• Matrice de préconditionnement, variable W = (P, u, e) et W = (P, u, S) :

$$P_e^{-1} \frac{\partial W}{\partial t} + A_e \frac{\partial W}{\partial x} = 0$$
$$P_e = \begin{bmatrix} \beta^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

• Paramètre β : $\beta^2 = \min \left[\max \left(M^2, KM_{\infty}^2 \right), 1 \right]$

• Valeurs propres du système non visqueux :

$$\lambda_{\pm} = rac{1}{2} \left[u(1+eta^2) \pm \sqrt{(eta^2-1)^2 u^2 + 4eta^2 c^2}
ight]$$

• β en visqueux ? β en instationnaire avec pas de temps dual ?

Eric Goncalves

Relations de compatibilités préconditionnées

• The number of variables to fix is given by the number of entering characteristic.

$$-c^{2}(\rho^{c}-\rho^{s})+(P^{c}-P^{s}) = 0 \qquad (3$$

$$V_t^c - V_t^s = 0 \qquad (4)$$

$$(\lambda_+ - V_n)(P^c - P^s) + \rho\beta^2 c^2 (V_n^c - V_n^s) = 0$$

$$(\lambda_{-} - V_{n})(P^{c} - P^{s}) + \rho \beta^{2} c^{2} (V_{n}^{c} - V_{n}^{s}) = 0$$

subscript $c \rightarrow$ variable to evaluate on boundaries. subscript $s \rightarrow$ variables obtained with the numerical scheme.

- Inlet : 4 variables P_i, T_i and direction of velocity. Iterative procedure relation (6) to compute P.
- Outlet : 1 variable, the static pressure.
 3 relations (3)-(5) to compute all variables.

(5) (6)

Code incompressible étendu

Formulation pression-vitesse - algorithme SIMPLE modifié

Eric Goncalves

Modélisation et simulation de la cavitation

Validation en géométrie de Venturi

Venturi 4 degrés, Barre et al. 2009

- Expériences menées au CREMHYG. $V_{entree} = 10.8 \text{ m/s.}$ $\sigma_{entree} = \frac{P_{entree} - P_{vap}}{0.5\rho U_{entree}^2} \simeq 0.55$: le paramètre de cavitation en entrée
- Poche de cavitation attachée au col, de longueur d'environ 80 mm.
- Bi-sondes optiques pour mesurer profils de taux de vide et vitesse.

Vue de la géometrie et de la poche

Station 1 Station 2 Station 3 Station 4 Station 5

(日) (周) (王) (王)

Modélisation et simulation de la cavitation

Code incompressible IZ (Y. Delannoy et J-L. Reboud)

- Solveur 1-fluide RANS, Volumes Finis, maillages structurés orthogonaux.
- Algorithme itératif SIMPLE et loi barotrope sinus $\rho(P)$.
- Modèle de turbulence : $k \varepsilon$ avec limiteur de Reboud.

Tests sur le Venturi 4 degrés

solveur incompressible IZ

Comparaison de codes compressible/incompressible

Profils taux de vide et vitesse, station 3

- Code incompressible : poche oscillante périodique à 6Hz.
- Code compressible : résultats en bon accord avec l'expé.
- $\bullet \rightarrow$ Effets de compressibilité des phases pures? Acoustique?

Code incomp. étendu - schéma PIMPLE cavitant de openFOAM

Eric Goncalves

Modélisation et simulation de la cavitation

61/122

= >

Comparaison de codes compressible/incompressible

Code incompressible openFOAM

- Solveur 1-fluide RANS, Volumes Finis, maillages structurés.
- Algorithme itératif PIMPLE et TTV de Kunz.
- Modèle de turbulence : $k \omega$ SST de Menter.

Eric Goncalves

Modélisation et simulation de la cavitation

Comparaison de codes compressible/incompressible

Profils taux de vide et vitesse, station 3

• Code incompressible : jet rentrant très faible et film liquide à la paroi.

- Code compressible : résultats en accord avec l'expé.
- → problème de modèle ou de numérique?

물 나는 물 나는 것이 좋다.

Ratio entre ρ_l et ρ_v

- On introduit dans les codes les valeurs de ρ_l et ρ_v à saturation.
- Plus le ratio ρ_l/ρ_v est grand, plus le système est raide à intégrer.
- \rightarrow choix de valeurs de ho_{v} plus grande que la valeur physique.

(日) (周) (王) (王)

Validation en géométrie de Venturi (2)

Venturi 8 degrés, Aeschlimann et al., Open J. Fluid Dynamics 2013

• Expériences menées au CREMHYG. $V_{entree} = 7 \text{ m/s.}$

 $\sigma_{entree} = \frac{P_{entree} - P_{vap}}{0.5 \rho U_{entree}^2} \simeq 2.15 : \text{le paramètre de cavitation en entrée}$

- Poche oscillante quasi périodique \simeq 45 Hz avec lâchers de structures.
- Bi-sondes optiques pour mesurer profils de taux de vide et vitesse.

Vue de la géometrie et de la poche

Modélisation et simulation de la cavitation

Comparaison de modèles : 3-eqt versus 4-eqt

- Simulations instationnaires (2 s), code compressible préconditionné.
- Loi d'état sinus. α analytique ou transport de taux de vide.
- Modèle de turbulence : Spalart-Allmaras avec le limiteur de Reboud.

Evolution du gradient de masse volumique (Schlieren)

(4月) (日) (日)

Profils moyennés en temps

• Meilleure prédiction des lâchers avec le modèle TTV

물 시 문 시

Influence de la loi d'état - modèles transport de taux de vide

- Simulations instationnaires (2 s), code compressible préconditionné.
- Modèle TTV. Lois d'état sinus versus mélange de gaz raide (SG).
- Modèle de turbulence : Spalart-Allmaras avec le limiteur de Reboud.

Evolution du gradient de masse volumique (Schlieren)

(4月) (4日) (4日)

Profils moyennés en temps

• Meilleurs profils avec le modèle SG mais fréquence du phénomène de 20 Hz.

로마 소문다

Comparaison de codes, calculs du Venturi 8 degrés

Comparaison code incompressible IZ / code FineTurboTM

- Loi d'état barotrope sinus et modèle $k \varepsilon$ + Reboud pour les deux codes.
- Code incompressible : condition de sortie instationnaire. Ordre 1 en temps.
- Code commercial FineTurboTM : $\rho_v = 10 \text{ kg/m}^3$. Dual time stepping.

Propagation d'ondes de pression

Problème de conditions aux limites de sortie

- Poche instationnaire en géométrie confinée (par exemple Venturi).
- Propagation d'ondes de pression générées par le collapse des structures dans tout le domaine de calcul.
- Observation : perturbations de pression parasites qui peuvent remonter l'écoulement.

Poche instationnaire, Venturi 8 degrés

Métastabilité de la phase vapeur

Masse volumique ρ_v constant ou ρ_v variable?

- Etat d'équilibre : $\rho_v = \rho_v^{sat}$,valeur à saturation.
- Etat métastable : $\rho_v(P, T)$ variable selon la loi des gaz raides.
- Modèle transport de taux de vide avec loi d'état sinus.

Tests sur le Venturi 8 degrés (thèse de Boris Charrière)

Eric Goncalves

Modélisation et simulation de la cavitation
Tube à détente avec transfert de masse

● Vitesse du son de Wallis modifiée ⇒ fronts d'onde de détente modifiés

Dans la poche, le taux de vide est le même.

물 제 문 문 제

Champ turbulent et équations moyennées RANS

Eric Goncalves

Modélisation et simulation de la cavitation

74/122

Une grande quantité de questions ouvertes

Questions

- Spectre d'énergie, pente \neq -5/3
- Echelle de Kolmogorov / taille des structures diphasiques.
- Turbulence induite ou pseudo-turbulence.
- Effets de compressibilité sur la turbulence.
- Anisotropie du tenseur de Reynolds.
- Augmentation ou diminution de l'intensité turbulente.
- Interaction cavitation-turbulence aux petites échelles.
- Couche limite cavitante. Profil de vitesse universel.

Remarques

- Pas de DNS et très peu de données expérimentales.
- Non universalité des écoulements diphasiques.

Champ fluctuant

Le champ de vitesse fluctuante n'est pas à divergence nulle (même si les phases pures sont incompressibles) :

$$\frac{\partial u_{k,l}^{'}}{\partial x_{l}} = -\frac{\partial \overline{\overline{u}}_{k,l}}{\partial x_{l}} = \frac{1}{\alpha_{k}} u_{k}^{'} \cdot n_{k} \delta_{l}$$

 \rightarrow termes supplémentaires "compressibles" ou "dilatationnels". Equation pour les fluctuations :

$$\begin{split} \rho_{k} \frac{\partial u_{k,i}^{''}}{\partial t} + \rho_{k} \widetilde{u}_{k,l} \frac{\partial u_{k,i}^{''}}{\partial x_{l}} &+ \rho_{k} u_{k,l}^{''} \frac{\partial \widetilde{u}_{k,i}}{\partial x_{l}} + \rho_{k} u_{k,l}^{''} \frac{\partial u_{k,i}^{''}}{\partial t} \\ &= \frac{\partial \mathbb{T}_{k,il}}{\partial x_{l}} + \rho_{k} \widetilde{u}_{k,i} \frac{\partial \widetilde{u}_{k,l}}{\partial x_{l}} \\ &+ \frac{\rho_{k}}{\overline{\rho}_{k} \alpha_{k}} \left[-\frac{\partial \alpha_{k} \overline{\overline{\mathbb{T}}}_{k,il}}{\partial x_{l}} - \mathbb{M}_{k} + \frac{\partial}{\partial x_{l}} \left(\alpha_{k} \overline{\rho}_{k} u_{k,i}^{''} u_{k,l}^{''} \right) \right] \\ &+ \frac{\rho_{k}}{\overline{\rho}_{k} \alpha_{k}} \left[\widetilde{u}_{k,i} \left(\frac{\partial \alpha_{k} \overline{\rho}_{k}}{\partial t} + \widetilde{u}_{k,l} \frac{\partial \alpha_{k} \overline{\rho}_{k}}{\partial x_{l}} \right) \right] \end{split}$$

Eric Goncalves

Modélisation et simulation de la cavitation

Equation pour l'énergie cinétique turbulente de la phase k

équation phasique TKE k_k

$$\frac{\partial \alpha_k \overline{\rho}_k k_k}{\partial t} + \operatorname{div} \left(\alpha_k \overline{\rho}_k k_k \widetilde{u}_k \right) = \alpha_k \overline{\rho}_k \left(P_k - \varepsilon_k + \Pi_k + M_k + D_k \right) + \Gamma_k K^{\mathsf{T}}$$

avec :

$$\begin{split} \overline{\overline{\rho}}_{k} \alpha_{k} P_{k} &= -\alpha_{k} \overline{\overline{\rho}}_{k} u_{k,i}^{''} u_{k,i}^{''} \frac{\partial \widetilde{u}_{k,i}}{\partial x_{l}} \quad \text{Production} \\ \overline{\overline{\rho}}_{k} \alpha_{k} \epsilon_{k} &= \alpha_{k} \overline{\tau_{k,il}^{'}} \frac{\partial u_{k,i}^{''}}{\partial x_{l}} \quad \text{Taux de dissipation} \\ \overline{\overline{\rho}}_{k} \alpha_{k} \Pi_{k} &= \alpha_{k} \overline{p_{k}^{'}} \frac{\partial u_{k,i}^{''}}{\partial x_{i}} \quad \text{Pression-dilatation} \\ \overline{\overline{\rho}}_{k} \alpha_{k} M_{k} &= \alpha_{k} \overline{u_{k,i}^{''}} \left[-\frac{\partial \overline{\overline{\rho}}_{k}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{k,il}}{\partial x_{l}} \right] \quad \text{Flux de masse} \\ \overline{\overline{\rho}}_{k} \alpha_{k} D_{k} &= -\frac{\partial}{\partial x_{l}} \left[\alpha_{k} \overline{\overline{P_{k}^{'}} u_{k,i}^{''}} \delta_{il} - \alpha_{k} \overline{\overline{\tau_{k,il}^{''}} u_{k,i}^{''}} \right] - \frac{\partial \alpha_{k} \overline{\rho_{k}} \frac{u_{k,i}^{''} u_{k,i}^{''}}{\partial x_{l}} \quad \text{Diffusion} \\ \overline{\Gamma_{k}} K^{\Gamma} \quad \text{Transfert de masse} \end{split}$$

Eric Goncalves

Modélisation et simulation de la cavitation

77/122

TKE pour le mélange

$$\frac{\partial \rho_m k_m}{\partial t} + \operatorname{div} \left(\rho_m k_m u_m \right) = \rho_m P_m + \rho_m \Pi_m - \rho_m \epsilon_m + \rho_m M_m + \rho_m D_m + \Gamma_m K_m^{\Gamma}$$

On suppose que chaque phase partage la même fluctuation de vitesse u_i'' , la même fluctuation de pression P' et la même fluctuation de tenseur visqueux τ_{ii}' :

$$\rho_{m}P_{m} = \tau_{m,il}^{t} \frac{\partial u_{m,i}}{\partial x_{l}} \qquad ; \qquad \rho_{m}\Pi_{m} = P' \frac{\partial u_{i}''}{\partial x_{i}}$$
$$\rho_{m}\epsilon_{m} = \overline{\tau_{il}'} \frac{\partial u_{i}''}{\partial x_{l}} \qquad ; \qquad \Gamma_{m}K_{m}^{\Gamma} = 0$$

$$\rho_{m}M_{m} = \overline{u_{i}^{\prime\prime}}\left[-\frac{\partial p_{m}}{\partial x_{i}}\right] + \overline{u_{i}^{\prime\prime}}\left[\frac{\partial \tau_{m,il}}{\partial x_{l}} - \sum_{k}\overline{\tau}_{k,il}\frac{\partial \alpha_{k}}{\partial x_{l}}\right]$$
$$\rho_{m}D_{m} = -\frac{\partial}{\partial x_{l}}\left[\overline{p^{\prime}u_{i}^{\prime\prime}}\delta_{il} - \overline{\tau_{il}^{\prime}u_{i}^{\prime\prime}}\right] - \frac{\partial \rho_{m}\frac{\overline{u_{i}^{\prime\prime}u_{i}^{\prime\prime}}}{\partial x_{l}}$$

Eric Goncalves

Modélisation et simulation de la cavitation

Considérations générales

- Le champ de vitesse fluctuant n'est pas à divergence nulle → termes supplémentaires, difficiles à modéliser.
- Le taux de dissipation ε n'est pas solenoidal. Contribution inhomogène et dilatationnelle (ou compressible).

$$\rho \epsilon \approx \underbrace{2\mu \,\overline{\omega'_{ik} \omega'_{ik}}}_{\rho \varepsilon_s} + \underbrace{2\mu \,\frac{\partial}{\partial x_k} \left[\frac{\partial \overline{u'_k u'_l}}{\partial x_l} - 2 \,\overline{u'_k s'_{ll}}\right]}_{\rho \varepsilon_{inh}} + \underbrace{\frac{4}{3} \,\mu \,\overline{s'_{kk} s'_{ll}}}_{\rho \varepsilon_d}$$

• Le terme de diffusion est modélisé avec une formulation en gradient.

• Le taux de dissipation du mélange ε est complètement modélisé selon la formulation monophasique.

Hypothèse de Boussinesq

Analogie de Boussinesq et viscosité turbulente du mélange μ_{tm} :

$$\tau_{m,ij}^{t} = \mu_{tm} \left[\frac{\partial u_{m,i}}{\partial x_{j}} + \frac{\partial u_{m,j}}{\partial x_{i}} - \frac{2}{3} \operatorname{div} u_{m} \delta_{ij} \right] - \frac{2}{3} \rho_{m} k_{m} \delta_{ij}$$

Evaluation de μ_{tm} avec des modèles à équation de transport.

Loi de Fourier turbulente

Analogie à la loi de Fourier et conductivité thermique de mélange λ_m^t :

$$q_m^t = -\lambda_m^t \operatorname{grad} T_m$$

Hypothèse de nombre de Prandtl turbulent constant Pr_t :

$$\lambda_m^t = \sum \alpha_k \lambda_k^t = \sum \alpha_k \frac{\mu_k^t C_{pk}}{Pr^t} \quad \text{approximé par} \quad \lambda_m^t \simeq \frac{\mu_m^t C_{pm}}{Pr^t}$$

Eric Goncalves

Pression-dilatation, formulation de Sarkar

$$\rho \Pi = \overline{P' \frac{\partial u''_i}{\partial x_i}} = -\alpha_2 \rho P M_t + \alpha_3 \rho \varepsilon_s M_t^2$$

 α_2 , α_3 constantes à calibrer. $M_t = \frac{\sqrt{k}}{2c}$ est le Mach turbulent.

Dissipation dilatationnelle, formulation de Sarkar

$$\varepsilon_d = \frac{4}{3} \mu \overline{s'_{kk} s'_{ll}} = \alpha_1 \varepsilon_s M_t^2 \text{ avec } \alpha_1 \text{ à calibrer}$$

Flux de masse, formulation de Jones

$$\rho M = \frac{\overline{\rho' u_i''}}{\rho} \left(\frac{\partial \overline{P}}{\partial x_i} - \frac{\partial \overline{\sigma}_{il}}{\partial x_l} \right) = -\frac{\mu_t}{\rho^2 \sigma_p} \frac{\partial \rho}{\partial x_i} \frac{\partial P}{\partial x_i}$$

 σ_p est un nombre de Schmidt turbulent, à calibrer.

Eric Goncalves

Choix usuel, modèle $k - \varepsilon$ pour le mélange

Equations de transport équivalentes au cas monophasique. Tous les termes supplémentaires sont négligés. Seule la dissipation solénoidale est prise en compte.

$$\begin{aligned} \frac{\partial \rho \, k}{\partial t} + \, \operatorname{div} \left[\rho \, u \, k - \left(\mu + \frac{\mu_t}{\sigma_k} \right) \, \operatorname{grad} k \right] &= \rho P_k - \rho \varepsilon \\ \frac{\partial \rho \varepsilon}{\partial t} + \, \operatorname{div} \left[\rho \, u \, \varepsilon - \left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \, \operatorname{grad} \varepsilon \right] &= c_{\varepsilon 1} \frac{\varepsilon}{k} \rho P_k - \rho c_{\varepsilon 2} f_2 \frac{\varepsilon^2}{k} \\ \mu_t &\approx \rho \frac{k^2}{\varepsilon_s} \end{aligned}$$

Remarques

- Une grande quantité d'hypothèses.
- Ajout d'un modèle de paroi (fonctions d'amortissement, lois de paroi)
- Une grande quantité de problèmes!

イボト イラト イラト

Limitation de la viscosité turbulente

Le limiteur de Reboud

$$\mu_t = f(\rho)C_{\mu}\frac{k^2}{\epsilon}$$

$$f(\rho) = \rho_v + \left(\frac{\rho_v - \rho}{\rho_v - \rho_l}\right)^n (\rho_l - \rho_v)$$

$$n \text{ est fixé à 10 usuellement}$$

Correction SST - hypothèse de Bradshaw en couche limite 2D

$$\mu_{t} = \frac{\rho k/\omega}{\max\left(1, \frac{\Omega F_{2}}{a_{1}\omega}\right)}; \ a_{1} = 0.3; \ \Omega = \sqrt{2\Omega_{ij}\Omega_{ij}} \text{ with } \Omega_{ij} = \frac{1}{2}\left(\frac{\partial \tilde{u}_{i}}{\partial x_{i}} - \frac{\partial \tilde{u}_{l}}{\partial x_{i}}\right)$$

Contraintes de réalisabilité de Durbin

$$\mu_t = \min\left(C^0_{\mu}; \frac{c}{s\sqrt{3}}\right) \frac{\rho k^2}{\epsilon} ; \ 0 \le c \le 1 ; \ C^0_{\mu} = 0.09 ; \ s = \frac{k}{\epsilon} S \text{ with } S = 2S_{ij}S_{ij} - \frac{2}{3}S^2_{kk}$$

Eric Goncalves

Le limiteur de Reboud

Simulation du Venturi 4 degrés, modèle de Spalart-Allmaras

Limitation de la viscosite turbulente μ_t

Eric Goncalves

Modélisation et simulation de la cavitation

イロト イポト イヨト イヨト

Autres modèles - approche hybride RANS/LES

Comparaison entre $k - \ell$ Scale-Adaptive et DES de Spalart

gradient de masse volumique à deux instants différents : $k - \ell$ S-A (gauche) et DES (droite)

Eric Goncalves

Modélisation et simulation de la cavitation

Simulations 3D du Venturi 4°

Comparaison entre $k - \ell$ Scale-Adaptive et DES de Spalart

Simulations 3D du Venturi 4°

Comparaison entre les calculs 2D et 3D

- Résultats assez proches pour les profils moyens (stations 3 et 4).
- Effets 3D faibles en moyenne à mi-envergure.
- Effets 3D visibles en instantané.

(日) (周) (王) (王)

Comparaison entre les calculs 2D et 3D

Le niveau de fluctuation de pression RMS est largement surestimé par les simulations 3D.

Pression paroi et fluctuations RMS

《曰》 《圖》 《言》 《言》

Simulations 3D du Venturi 4°

Mode oblique avec l'approche Scale-Adaptive

Gradient de masse volumique

ightarrow instabilité transverse à basse fréquence autour de 6 Hz.

Eric Goncalves

Modélisation et simulation de la cavitation

Modèle de paroi

Eric Goncalves

Modélisation et simulation de la cavitation

90/122

< 日 > < 四 > < 回 > < 回 > < 回 > <

Couche limite turbulente

Questions

- Existence d'un profil de vitesse dit universel.
- Existence d'un loi log instantanée.
- Loi de paroi cavitante (κ fonction de α).
- Fonctions d'amortissement de la turbulence en proche paroi.
- Modifications des propriétés turbulentes en aval d'une poche.
- Effets de compressibilité.

Etude numérique

- Simulations avec différents maillages : y⁺ variant de 1 à 50.
- Comparaison de lois de paroi : two-layer versus TBLE.

Two-layer wall model

Formulation - similar to single-phase flows

$$u^+ = y^+$$
 if $y^+ < 11.13$
 $u^+ = \frac{1}{\kappa} \ln y^+ + 5.25$ if $y^+ > 11.13$

where $\kappa = 0.41$ is the von Karman constant For unsteady flows, validity of the velocity profile at each instant.

<u>Turbulent quantities</u> : the production of k or directly k is fixed following the formulation by Viegas and Rubesin :

$$P_k = \frac{1}{y} \int_0^y \tau_{xy}^t \frac{\partial u}{\partial y} \, dy$$

The second variable is computed through a length scale.

Formulation

Simplified momentum equation :

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} + \frac{1}{\rho} \frac{dP}{dx_i} = \frac{\partial}{\partial y} \left[(\mu + \mu_t) \frac{\partial u_i}{\partial y} \right]$$

Use of an embedded grid between the first grid point and the wall.

Discretization and integration of TBL equations in the embedded mesh. Iterative solving (Newton algorithm) for the variable τ_w . The number of nodes in the embedded grid is N = 30.

Eric Goncalves

Simulations du Venturi 4 degrés

Simulations avec différents maillages en proche paroi

- Maillage avec 251 noeuds dans la direction de l'écoulement x.
- Le nombre de mailles diffère en y dans la couche limite.
- Les y⁺ première maille varient entre 9 et 60 près du col.
- Maillage 251×81 avec $y^+ = 1$ calculé sans lois de paroi.

Simulations du Venturi 4 degrés

Two-layer model versus TBLE model

Eric Goncalves

Modélisation et simulation de la cavitation

95/122

= >

Comparaison avec les calculs en maillage fin

Calculs maillage fin 251 imes 81 et calculs lois de paroi 251 imes 62.

Modélisation et simulation de la cavitation

Simulations du Venturi 8 degrés

Simulations avec différents maillages en proche paroi

- Maillage avec 174 noeuds dans la direction de l'écoulement x.
- Le nombre de mailles diffèrent en y dans la couche limite.
- Les y⁺ première maille varient entre 1 et 30 près du col.
- Maillage 251×77 avec $y^+ = 1$ calculé sans lois de paroi.

97/122

(그) (귀) (그) (그)

Fréquence et coût CPU

La fréquence expérimentale (signal de pression) est autour de 45 Hz. Le paramètre de cavitation en entrée $\sigma_{inlet} \sim 2.15$.

mesh	$\sigma_{\textit{inlet}}$	fréquence (Hz)	cout pour 100 ite. (s)	ratio
174×77	2.13	30	525.6	1
	2.18	pas de fréquence		
174×62	2.13	35	429.6	0.817
	2.17	40		
174×60	2.13	35	419.4	0.80
	2.19	43.5		
174×59	2.14	44	408	0.776
174 $ imes$ 57	2.145	46	393	0.747
174~ imes~56	2.14	46	387	0.736

《口》 《圖》 《臣》 《臣》

Equations 1-fluide filtrées

Eric Goncalves

Modélisation et simulation de la cavitation

99/122

물 제 문 제 문 제 .

Equations 1-fluide filtrées

Scales

- Micro-scales, scales which are small enough to describe individual bubble shapes.
- Meso-scales, which are comparable to bubble sizes.
- Macro-scales, which entail enough bubbles for statistical representation.
- When LES is applied at a micro-scale, combination with interface tracking methods (Lakehal).
- When LES is applied at a macro-scale, the interface resolution is not considered.
- The scale separation is mathematically obtained by applying a convolution product using a large-scale-pass filter (function G).

Filtrage

- For a quantity ϕ , the filtered variable is defined as : $\overline{\phi} = {\cal G} \circ \phi$
- The Favre filtered variable : $\tilde{\phi}=\overline{
 ho\phi}/\overline{
 ho}$
- The filtered phase indicator function $\overline{X_k} = G \circ X_k = \alpha_k$ can be interpreted as a filtered volume fraction of phase k.

Fonction indicatrice de phase

La fonction indicatrice de phase est définie par :

 $X_k(M(x,t)) = \begin{cases} 1 & ext{si la phase k est présente en } M(x,t) \text{ à } t \\ 0 & ext{sinon} \end{cases}$

《日》 《國》 《문》 《문》 - 臣 -

Equations

Assumptions : the filtering operator commutes with time and spatial derivatives. The mass transfer is assuming to be proportional to the velocity divergence through a constant C.

$$\begin{aligned} \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{i}\right)}{\partial x_{j}} &= 0 \\ \frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} + \overline{P} \delta_{ij}\right)}{\partial x_{j}} &= \operatorname{div}\left(2\overline{\mu} \widetilde{S} + 2\tau_{\mu S} - 2\tau_{\rho S} - \tau_{\rho u u}\right) \\ \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{H} \widetilde{u}_{i} + \overline{Q}_{i}^{v}\right)}{\partial x_{j}} &= \operatorname{div}\left(2\tau_{\mu S u} - 2\overline{\mu} \widetilde{V} \tau_{\rho S} - 2\overline{\mu} \widetilde{S} \tau_{\rho u}\right) \\ &+ \operatorname{div}\left(4\overline{\mu} \tau_{\rho u} \tau_{\rho S} + \overline{\rho} \widetilde{H} \tau_{\rho u} - \tau_{\rho H u}\right) \\ \frac{\partial \alpha}{\partial t} + \widetilde{V} \cdot \nabla \alpha - C \frac{\partial \widetilde{u}_{i}}{\partial x_{j}} &= -\tau_{u \alpha} - C \operatorname{div}\left(\tau_{\rho u}\right) \end{aligned}$$

Eric Goncalves

Equations 1-fluide filtrées

Subgrid terms

$$\begin{aligned} \tau_{u\alpha} &= \overline{V.\nabla X_{v}} - \tilde{V}.\nabla \alpha & ; & \tau_{\rho u} = \tilde{V} - \overline{V} \\ \tau_{\mu S} &= \overline{\mu S} - \overline{\mu} \overline{S} & ; & \tau_{\rho S} = \tilde{S} - \overline{S} \\ \tau_{\rho H u} &= \overline{\rho H V} - \overline{\rho} \tilde{H} \tilde{V} & ; & \tau_{\mu S u} = \overline{\mu S V} - \overline{\mu} \overline{S V} \\ \tau_{\rho u u} &= \overline{\rho} \left(\widetilde{V \otimes V} - \tilde{V} \otimes \tilde{V} \right) \end{aligned}$$

- The subgrid term au_{ulpha} is specific to two-phase flows.
- The influence and the hierarchy of all these terms have never been investigated in cavitating flows.
- The magnitude of the different subgrid terms was a priori evaluated in the case of phase separation flows and turbulence bubble interaction (Labourasse, Vincent) \rightarrow the influence of $\tau_{u\alpha}$ is highly dependent on the flow configurations and/or on the chosen two-phase description.

Cavitation non isotherme

Eric Goncalves

Modélisation et simulation de la cavitation

104/122

《日》 《圖》 《문》 《문》 三臣

Changement de phase

fluide	T_{ref} (K)	P_{vap} (Pa)	dP_{vap}/dT (Pa/K)
eau	293	2339	145
R-114	293	181100	6000
LH2	19	67960	22000
LH2	23	209320	50000

Thermosensitive fluids

- The thermodynamic behaviour is sensitive to the temperature particularly the vapor pressure *P*_{vap}.
- The slope of the saturation curve dP_{vap}/dT is high.

Local cooling effect and B-factor theory

- The energy required for vaporization phenomenon is brought by the liquid and creates a local cooling effect.
- A heat balance between the two phases can estimate the scale of temperature difference ΔT* caused by thermal effects.
- The *B*-factor is estimated as the ratio between the actual temperature drop and ΔT^* :

$$\Delta T^* = rac{
ho_v L_{vap}}{
ho_l C_{p_l}}$$
 and $B = rac{\Delta T}{\Delta T^*} \simeq rac{lpha}{1-lpha}$

Eric Goncalves

イロン イボン イヨン イヨン

Régime inertiel et régime thermique

Cas de la croissance d'une bulle isolée

- Modification du phénomène due au transfert de chaleur autour de la bulle.
- Séparation entre le régime inertiel (Rayleigh-Plesset) et le régime thermique où les transferts de chaleur pilotent le processus d'évaporation.
- Idem pour la condensation.

Régime inertiel

En régime inertiel, la croissance d'un bulle de vapeur sphérique est régie par l'équation de Rayleigh-Plesset.

Pour un rayon inital R_0 le temps caractéristique de croissance est :

$$t_{inertiel} = \sqrt{\frac{3}{2} \frac{\rho_l R_0^2}{(P_{vap} - P)}}$$

ヘロト 不得下 不足下 不足下

Régime thermique

En régime thermique, la croissance de la bulle est limitée par le flux de chaleur à l'interface entre le liquide et la vapeur. Le temps caractéristique de croissance est :

$$t_{thermique} = \frac{\pi}{16} \frac{R_0^2}{f(Ja) \ Ja^2 D_l^{th}}$$

où f(Ja) est une fonction correctrice et D_i^{th} la diffusivité thermique liquide.

Cas des fluides thermosensibles

- La croissance d'une bulle commence en régime inertiel et le régime thermique apparaît très rapidement.
- Le temps de transition entre les 2 régimes est $< 1\mu s$ pour l'eau chaude, le fréon R-144 et les ergols en cryogénie.
- En pratique, le régime thermique est dominant. Or, 90 % des études se basent sur le régime inertiel !
Temps de relaxation relatif aux équilibres

- Les termes interfaciaux sont reliées à des temps de relaxation relatifs à l'équilibre des pressions, vitesses, températures et potentiels chimiques.
- Temps estimés pour des cas en détonation (Kapila 2001) :

ε_{P}	=	$3.010^{-8}s$
εu	=	$1.010^{-7}s$
εт	=	$1.810^{-2}s$

Le temps caractéristique de l'écoulement est d'environ 10⁻⁴ s.

 \Rightarrow Les équilibres de pression et de vitesse se produisent rapidement.

- \Rightarrow L'écoulement est en déséquilibre thermique.
- Hypothèse de relaxation infiniment rapide relatif à l'équilibre thermique est peut-être forte dans de nombreux cas.

くロン く得い くまい くまい

Tube à détente en eau

Cas vitesse d'étirement du fluide $u_0 = 100 \text{ m/s}$

- Fort refroidissement dans la poche dû à l'évaporation.
- Le taux de vide est proche de 1 dans la poche.
 La théorie du B-facteur est inutilisable : B = α/(1 α).
- Modèle à 2 températures (modèle à 5 équations)? Introduire une cinétique du changement de phase?

(日) (周) (王) (王)

Tube à détente en LH_2 à 22.1 K

Cas vitesse d'étirement du fluide $u_0 = 100 \text{ m/s}$

- Large dépression en-dessous de P_{vap}(T_{ref}) autour de 1.2 bar, due à la grande valeur de dP/dT.
- Le refroidissement dû à la vaporisation est $\simeq 6.5$ K. La théorie du B-facteur avec $\alpha_{max} = 0.86$ donne une valeur de 6 K.
 - \Rightarrow bon accord en les calculs et lé théorie.

Venturi à 4 degrés

- Expérience menée à Grenoble. V_{inlet} =14.4 m/s. T_{ref} = 293K. $\sigma_{inlet} \simeq 0.55$: paramètre de cavitation en entrée.
- Poche de cavitation attachée au col, de longueur environ 80 mm.
- Bi-sondes optiques et thermo-couple pour α et température paroi.

Géométrie et maillage 251×77 noeuds

Calculs de Venturi en fréon R-114

- Epaississement de la poche en non isotherme.
- Fort refroidissement en isotherme \simeq 12 K dans la couche limite.
- Bon accord pour la valeur à la paroi en non isotherme.

(日) (周) (王) (王)

Calculs de Venturi en fréon R-114

Comparison modèle 3-eqt et modèle 4-eqt (TTV)

- Rechauffement en aval de la poche dû à la condensation.
- Ce phénomène n'est pas reproduit par le modèle 3-eqt.

Eric Goncalves

Modélisation et simulation de la cavitation

Comparison modèle 3-eqt et modèle 4-eqt (TTV)

- Meilleure simulation de l'épaisseur de la poche avec le modèle TTV.
- Meilleurs résultats obtenus avec la loi d'état sinus.

《口》 《聞》 《臣》 《臣》

Simulations 3D de turbopompes

Eric Goncalves

Modélisation et simulation de la cavitation

116/122

물 이 문 물 이

Cryotechnic propulsion

Cold water tests [CREMHyG] Snecma inducer

(日) (周) (王) (王)

Cavitation in turbopumps

- Modeling and simulation of cavitation in cryogenic conditions *LH*2 and *LOx* axial pump called inducer.
- Cavitation \rightarrow limitating phenomenon for the conception.
- Consequences \rightarrow head drop, instabilities and vibrations.

3D turbulent case : inducer geomrtry with liquid hydrogen LH₂

3-blade inducer designed by the NASA

- $V_{ref} = 200 \text{ m/s}$. $\omega = 30000 \text{ tr/min}$. T_{ref} 19 to 23K. $Re \simeq 75$ millions.
- flow rate $\phi = \frac{V_{inlet}}{\omega R_{shroud}} = 0.098$ et 0.108
- Curves Ψ(NPSH) at various flow rate and temperature.

Geometry, one blade-to-blade channel - 740000 nodes with tip leakage

Modélisation et simulation de la cavitation

Inducer in liquid hydrogen LH_2 (2)

Head drop : comparison between experiment/numeric

For T_{ref}=19K, good result for the NPSH of drop (1.5 % error).
For T_{ref}=23K, not so good! (22 % error).

Eric Goncalves

119/122

리아 이 격아.

Inducer in liquid hydrogen LH₂ (3)

Void ratio, mi-span cutting plane, ϕ =0.108 and T_{ref} =23K

- Attached cavity along the bevel on the leading edge
- Cavitation pocket on the lower side
- Weak value of void ratio, 30% maximum

Inducer in liquid hydrogen LH_2 (4)

Temperature at wall on the upper side, ϕ =0.108 and T_{ref} =23K

Wall temperature

• Eckert number $Ec = \frac{R^2 \omega^2}{L_{vap}(T_{ref})}$ high : × 100 in comparison with cold water.

• Competition between viscous warming / cooling effect due to vaporization

Mots de la fin

Construction d'un code en régime cavitant

- Choix du corpus d'équations (3, 4, 5 équations et plus), hypothèses sur l'équilibre thermodynamique, glissement entre les phases, fermeture des transferts de masse et de chaleur, lois d'états.
- Respect de contraintes thermodynamiques.
- Schémas numériques, implicitation, préconditionnement bas Mach, termes non conservatifs, gradient de vitesse du son.
- Modèles de turbulence, termes dilatationnels (pression-dilatation), modèles de paroi, limitation de μ_t.
- Effets 3D avec éventuellement rotation.

Perspectives

- Couplage avec des études de stabilité.
- Formalisme LES, équations 1-fluide filtrées.
- Régime thermique et cinétique de changement de phase.