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Lattice Boltzmann Method

• LBM: Introduction
– Statistical Mesoscale Method

– Intermediate approach between 

Macroscopic and Microscopic 

Simulation

• From Molecular Dynamics
– Simplified Kinetic Model with 

fewer details is constructed from 

the Molecular Boltzmann 

Equation

– Fictitious particles moving in 

discrete space and time with 

discrete velocities

– Velocity space is finite and 

consists of a particular set of 

values

• To Macroscopic Dynamics
– Kinetic model is developed such 

that the Macroscopic Navier-

Stokes equation is recovered in 

low Mach number limit

– Linear convective operator

– No pressure-velocity decoupling

– Simplified boundary conditions

– Localized non-linearities

– Ease in Parallelization



1. Set the direction vectors

2. Find equilibrium distribution

LBM – Steps: Standard LBGK - D2Q9 model
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3. Stream and Collide
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4. Density and velocity given by

5. Applying Chapman-Enskog procedure in low Mach number limit 
gives N-S equations

6. Boundary conditions: Discussed later

LBM – Steps: Standard LBGK - D2Q9 model
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LBM: Advantages

• Linear streaming operator: Conventional CFD suffers 

from the linearization issues of the convection operator

• Collision non-linearities are localized: Highly desirable 

for parallelization

• Ease in handling complex geometries: No slip is 

incorporated by a simplified and  easy to implement 

condition which is the bounce back boundary condition 

• Multiphase-flow analysis: LBM, being a simplification 

of the Boltzmann equation offers relative ease in 

incorporation of micro-scale physics



Boundary issues in LBM

– Conventional bounce-back condition is only first 

order accurate

– Bounce-back condition can not be applied to 

moving boundaries and pressure conditions

– Higher order accurate BC has always been a 

topic of research in LBM

– Need a boundary condition that gives more 

accurate  results while preserving the simplicity 

of this method  



Boundary issues in LBM

• LBM is based upon streaming and collision. So before streaming, each 

inside node must have 8 particle distribution functions pointing towards it

• As an example, in the figure below, node 1 has all the surrounding fluid 

nodes, but node 2 has only 5 surrounding interior nodes

• So, we need to somehow get the remaining components of node 2 by using 

the appropriate boundary conditions

• The novel method that we have proposed obtains the remaining 

components based on the ghost cell approach

Inside node

Outside node
Node 2

Boundary curve

Node 1



• All the outside nodes that are required by the inside nodes are identified as 
ghost nodes

• Then particle distribution functions of the ghost nodes are estimated as:

• To obtain the equilibrium distribution function, we first need to estimate 
velocity and density values at the ghost nodes 

• To do this:

, , ,

eq neq

ghost i ghost i ghost if f f 

1. Ghost node is projected normally inside 

the fluid domain

2. Velocity and density values at projected 

node are computed by interpolating from 

the surrounding fluid modes

x
Inside node

Ghost node

x Projected ghost node

Ghost Cell Based IBM: Overview



• Then velocities of the ghost nodes are obtained based on the boundary 

condition as:

• Density of the ghost node is taken to be same as that of the projected 

node (zero normal gradient condition)

• Upon the calculation of density and velocity values of the ghost nodes, 

their equilibrium distribution functions can be easily computed using 

• Non-equilibrium part is calculated by the procedure similar to that 

adopted for the computation of density
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ghost projected

boundary ghost boundary projected
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Ghost Cell Based IBM: Overview



Depending upon where the projected ghost point lie, various cases may 

arise. We construct following cases by observing the nodes lying on the 

vertices of the  square inside which the projected point is located:

Steps: 

1. Find the square ABCD inside with the projected ghost node lie

Inside node

Ghost node

x Projected ghost node

Bilinear Interpolation Details 
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Interpolation Matrix: Velocity
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ax by cxy d    Using:

We have :



Interpolation Matrix: Velocity
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Interpolation Matrix: Density

ax by cxy d    Using:

& ( ) 0x y y xan bn c xn yn
n


    



at nodal points

at wall points

We construct matrix, which (as an example)for case (c) looks like :

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

1

1

0 0

0 0

x y y x

x y y x

x y x y a

x y x y b
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Ghost Fluid IBM: Summary
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Velocity:

Density:

Conditions:
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Results: Cylindrical Couette Flow: 321x321 
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Results: Cylindrical Couette Flow 

Second order accuracy of extrapolation of non-equilibrium part

Simulation w/o extrapolation 

of non-equilibrium part

Simulation with extrapolation 

of non-equilibrium part



Results: Cylindrical Eccentric Flow 

Cases

1 2 0.5 -0.1/√3 0

2 2 0.5 0 0.1/√3

3 2 0.5 -0.1/√3 0.1/√3

4 2 0.725 -0.1/√3 -0.1/√3

A  1 1r
2 2r



Results: Cylindrical Eccentric Flow 

Streamlines Pressure Contours



Results: Cylindrical Eccentric Flow: 321x321 
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Simulation (GF-IB-LBM) (GF-IB-LBM) FLUENT FLUENT

Case 1 0.1348 0.5517 0.1372 0.5525

Case 2 0.1614 1.1065 0.1618 1.1114

Case 3 0.8941 0.5391 0.9087 0.5418

Case 4 0.8940 (0.9509) 2.8724 (2.8560) 1.0003 2.8701



Results: Flow over cylinder in a channel: n=64 
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Results: Flow over cylinder in a channel 

n 16 32 64

Mussa et 

al. (n=80) 

[51]

Schäfer and 

Turek [50]

I
5.3203 

(5.3449)

5.4772 

(5.5025)

5.5799 

(5.6057) 5.5700-

5.5900
II

5.3577 

(5.3853)

5.515 

(5.5434)

5.6182 

(5.6471)
5.5584

I
0.0488 

(0.0490)

0.0141 

(0.0142)

0.0101 

(0.0101) 0.0104-

0.0110
II

0.0493 

(0.0496)

0.0143

(0.0144)

0.0103

(0.0103)
0.0113

I
6.1878 

(6.2164)

5.9088 

(5.9361)

5.9498 

(5.9773) 5.8600-

5.8800
II

6.2292 

(6.2614)

5.9489 

(5.9796)

5.9897 

(6.0205)
5.8091

I 0.8436 0.8629 0.8676 0.8420-

0.8520II 0.8342 0.853 0.8577 0.8402

dc

lc

p

L



Re = 100

Re = WD/ν

W  = Inner cylinder Velocity,

D = Gap Width

Aspect Ratio = 3.8

Grid Size = 125 X 125 X 95

Results: 3D Taylor Couette Flow



U velocity contours

Results: 3D Taylor Couette Flow

Velocity Vectors



Shan and Chen (Single Component Multiphase)
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Calculation of density, velocity 

and pressure
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He and Chen (Multicomponent 

single phase)
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LBM Multiphase
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Equilibrium values:

Equation of State:
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LBM Multiphase
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Droplet Collision / 

Impingement

• 2 droplets approach with identical velocity,

collide and coalesce.

• Density ratio = 60, viscosity ratio = 100

(left) and 120(right)

• Droplet velocity = 0.05 (lattice units)

• Droplet impingement on a solid surface 

(left), and liquid pool (right)

• Density ratio = 60, viscosity ratio = 100, 

Droplet velocity = 0.05 (lattice units)

30
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Droplet Collision
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Droplet Impingement
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Droplet dynamics
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Displacement Flow
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Flow in Complex Geometries
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Displacement flow in channel and 

header
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