Discontinuous Galerkin methods and applications

Daniele A. Di Pietro
Université de Montpellier

Porquerolles, 31 may-6 june 2015

Reference for this course


```
D. A. Di Pietro and A. Ern,
Mathematical Aspects of Discontinuous Galerkin Methods,
Number 69 in Mathématiques & Applications, Springer, Berlin, }201
```


Introduction I

Figure: Entries with the keyword "discontinuous Galerkin" in MathSciNet

Introduction II

Figure: Accuracy in advective problems [Di Pietro et al., 2006]

Introduction III

Figure: Compressible flow on Onera M6 wing profile [Bassi, Crivellini, DP, \& Rebay, 2006]

Introduction IV

Figure: High-order accuracy in convection-dominated flows (3d lid-driven cavity, [Botti and Di Pietro, 2011])

Introduction V

$|u|: 0.000 .200 .400 .600 .801 .001 .201 .401 .601 .602 .00$

Figure: Transient incompressible flows, Turek cylinder [Bassi, Crivellini, DP, \& Rebay, 2007]

Introduction VI

Figure: High-order in space-time

Introduction VII

Figure: Degenerate advection-diffusion [Di Pietro et al., 2008]

Introduction VIII

Figure: Adaptive derefinement [Bassi, Botti, Colombo, DP, Tesini, 2012]

The origins: First-order PDEs

■ [Reed and Hill, 1973], dG for steady neutron transport
■ [Lesaint and Raviart, 1974], first error estimate

- [Johnson and Pitkäranta, 1986], improved estimate
- [Cockburn and Shu, 1989], explicit Runge-Kutta dG methods

The origins: Second-order PDES

- [Nitsche, 1971], boundary penalty methods

■ [Babuška and Zlámal, 1973], Interior Penalty for bcs

- [Arnold, 1982], Symmetric Interior Penalty (SIP) dG method
- [Bassi and Rebay, 1997], compressible Navier-Stokes equations
- [Arnold et al., 2002], unified analysis

Part I

Basic concepts

Outline

1 Broken spaces and operators

2 Abstract nonconforming error analysis

3 Mesh regularity

Faces, averages, and jumps I

Definition (Mesh)

A mesh \mathcal{T} of Ω is a finite collection of disjoint open polyhedra $\mathcal{T}=\{T\}$ s.t. $\bigcup_{T \in \mathcal{T}} \bar{T}=\bar{\Omega}$. Each $T \in \mathcal{T}$ is called a mesh element.

Definition (Element diameter, meshsize)

Let \mathcal{T} be a mesh of Ω. For all $T \in \mathcal{T}, h_{T}$ denotes the diameter T, and the meshsize is defined as

$$
h:=\max _{T \in \mathcal{T}} h_{T} .
$$

We use the notation \mathcal{T}_{h} for a mesh \mathcal{T} with meshsize h.

Faces, averages, and jumps II

Figure: Example of mesh

Faces, averages, and jumps III

Definition (Mesh faces)

A closed subset F of $\bar{\Omega}$ is a mesh face if $|F|_{d-1}>0$ and

- either $\exists T_{1}, T_{2} \in \mathcal{T}_{h}, T_{1} \neq T_{2}$, s.t. $F=\partial T_{1} \cap \partial T_{2}$ (interface);
- or $\exists T \in \mathcal{T}_{h}$ s.t. $F=\partial T \cap \partial \Omega$ (boundary face).

Figure: Examples of interfaces

Faces, averages, and jumps IV

- Interfaces are collected in \mathcal{F}_{h}^{i}, boundary faces in \mathcal{F}_{h}^{b}, and

$$
\mathcal{F}_{h}:=\mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{b} .
$$

- For all $T \in \mathcal{T}_{h}$ we let

$$
\mathcal{F}_{T}:=\left\{F \in \mathcal{F}_{h} \mid F \subset \partial T\right\},
$$

and we set

$$
N_{\partial}:=\max _{T \in \mathcal{T}_{h}} \operatorname{card}\left(\mathcal{F}_{T}\right)
$$

- Symmetrically, for all $F \in \mathcal{F}_{h}$, we let

$$
\mathcal{T}_{F}:=\left\{T \in \mathcal{T}_{h} \mid F \subset \partial T\right\}
$$

Faces, averages, and jumps \vee

Definition (Interface averages and jumps)

Assume $v: \Omega \rightarrow \mathbb{R}$ smooth enough to admit a possibly two-valued trace on all interfaces. Then, for all $F \in \mathcal{F}_{h}^{i}$ we let

$$
\{v\}\}:=\frac{1}{2}\left(\left.v\right|_{T_{1}}+\left.v\right|_{T_{2}}\right), \quad \llbracket v \rrbracket:=\left.v\right|_{T_{1}}-\left.v\right|_{T_{2}} .
$$

For all $F \in \mathcal{F}_{h}^{b}$ with $F \subset \partial T$ we conventionally set $\{v v\}=\llbracket v \rrbracket=\left.v\right|_{T}$.

Broken polynomial spaces I

k	$d=1$	$d=2$	$d=3$
0	1	1	1
1	2	3	4
2	3	6	10
3	4	10	20

Table: Dimension of \mathbb{P}_{d}^{k} for $1 \leq d \leq 3$ and $0 \leq k \leq 3$

Discontinuous Galerkin methods hinge on broken polynomial spaces,

$$
\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega)\left|\forall T \in \mathcal{T}_{h}, v\right|_{T} \in \mathbb{P}_{d}^{k}(T)\right\}
$$

Hence, the number of DOFs is

$$
\operatorname{dim}\left(\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right)=\operatorname{card}\left(\mathcal{T}_{h}\right) \times \operatorname{card}\left(\mathbb{P}_{d}^{k}\right)=\operatorname{card}\left(\mathcal{T}_{h}\right) \times \frac{(k+d)!}{k!d!}
$$

Broken polynomial spaces II

Figure: Orthonormal polynomial basis functions for an L-shaped element

Lebesgue spaces

■ With $v: \Omega \rightarrow \mathbb{R}$ Lebesgue measurable and $1 \leq p \leq+\infty$, we set

$$
\|v\|_{L^{p}(\Omega)}:=\left(\int_{\Omega}|v|^{p}\right)^{1 / p} \quad \forall 1 \leq p<+\infty
$$

and, for $p=+\infty$,

$$
\|v\|_{L^{\infty}(\Omega)}:=\inf \{M>0| | v(x) \mid \leq M \text { a.e. } x \in \Omega\}
$$

- In either case, we define the Lebesgue space

$$
L^{p}(\Omega):=\left\{v \text { Lebesgue measurable } \mid\|v\|_{L^{p}(\Omega)}<+\infty\right\}
$$

- Equipped with $\|\cdot\|_{L^{p}(\Omega)}, L^{p}(\Omega)$ is a Banach space for all p

Sobolev spaces I

- Let ∂_{i} denote the distributional partial derivative with respect to x_{i}
- For a d-uple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$ we note

$$
\partial^{\alpha} v:=\partial_{1}^{\alpha_{1}} \ldots \partial_{d}^{\alpha_{d}} v
$$

- For an integer $m \geq 0$ we define the Sobolev space

$$
H^{m}(\Omega)=\left\{v \in L^{2}(\Omega) \mid \forall \alpha \in A_{d}^{m}, \partial^{\alpha} v \in L^{2}(\Omega)\right\}
$$

with $A_{d}^{m}:=\left\{\left.\alpha \in \mathbb{N}^{d}| | \alpha\right|_{\ell^{1}} \leq m\right\}$

Sobolev spaces II

- $H^{m}(\Omega)$ is a Hilbert space when equipped with the scalar product

$$
(v, w)_{H^{m}(\Omega)}:=\sum_{\alpha \in A_{d}^{m}}\left(\partial^{\alpha} v, \partial^{\alpha} w\right)_{L^{2}(\Omega)},
$$

- The corresponding norm is

$$
\|v\|_{H^{m}(\Omega)}:=\left(\sum_{\alpha \in A_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}
$$

- The case $m=1$ will be of particular importance in what follows

Broken Sobolev spaces and broken gradient I

■ We formulate local regularity in terms of broken Sobolev spaces

$$
H^{m}\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega)\left|\forall T \in \mathcal{T}_{h}, v\right|_{T} \in H^{m}(T)\right\}
$$

- Clearly, $H^{m}(\Omega) \subset H^{m}\left(\mathcal{T}_{h}\right)$
- We record for future use that

$$
\text { functions in } H^{1}\left(\mathcal{T}_{h}\right) \text { have trace in } L^{2}(\partial T) \text { for all } T \in \mathcal{T}_{h}
$$

Broken Sobolev spaces and broken gradient II

Definition (Broken gradient)
The broken gradient $\nabla_{h}: H^{1}\left(\mathcal{T}_{h}\right) \rightarrow\left[L^{2}(\Omega)\right]^{d}$ is defined s.t.

$$
\forall v \in H^{1}\left(\mathcal{T}_{h}\right),\left.\quad\left(\nabla_{h} v\right)\right|_{T}:=\nabla\left(\left.v\right|_{T}\right) \quad \forall T \in \mathcal{T}_{h}
$$

Lemma (Characterization of $H^{1}(\Omega)$)

A function $v \in H^{1}\left(\mathcal{T}_{h}\right)$ belongs to $H^{1}(\Omega)$ if and only if

$$
\llbracket v \rrbracket=0 \quad \forall F \in \mathcal{F}_{h}^{i} .
$$

Moreover it holds, for all $v \in H^{1}(\Omega)$,

$$
\nabla_{h} v=\nabla v \text { in }\left[L^{2}(\Omega)\right]^{d} .
$$

Abstract nonconforming error analysis I

- Let V be a function space s.t., with dense and continuous injections,

$$
V \hookrightarrow L^{2}(\Omega) \equiv L^{2}(\Omega)^{\prime} \hookrightarrow V^{\prime}
$$

- Let $a \in \mathcal{L}(V \times V, \mathbb{R})$ and $f \in V^{\prime}$
- We consider the model linear problem

$$
\begin{equation*}
\text { Find } u \in V \text { s.t. } a(u, w)=\langle f, w\rangle_{V^{\prime}, V} \text { for all } w \in V \tag{П}
\end{equation*}
$$

Abstract nonconforming error analysis II

■ Fix $k \geq 0$ and set $V_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$. In general, V_{h} is nonconforming:

$$
V_{h} \not \subset V
$$

- With $a_{h} \in \mathcal{L}\left(V_{h} \times V_{h}, \mathbb{R}\right), l_{h} \in \mathcal{L}\left(V_{h}, \mathbb{R}\right)$, a dG method for (Π) reads

$$
\begin{equation*}
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}\left(u_{h}, w_{h}\right)=l_{h}\left(w_{h}\right) \text { for all } w_{h} \in V_{h} \tag{h}
\end{equation*}
$$

- When is $\left(\Pi_{h}\right)$ a good approximation of (Π) ?

Abstract nonconforming error analysis III

- Let $\|\cdot\| \|$ and $\|\cdot\|_{*}$ denote two norms on a subspace $V_{* h}$ of $V+V_{h}$
- We formulate conditions to bound the error in the stability norm

$$
\left\|u-u_{h}\right\|
$$

by the best approximation error in V_{h} in the boundedness norm

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*}
$$

- In the analysis of dG methods we often have

$$
\|\cdot\| \neq\|\cdot\|_{*}
$$

Abstract nonconforming error analysis IV

Definition (Discrete stability)

We say that the discrete bilinear form a_{h} enjoys discrete stability on V_{h} if there is $C_{\text {sta }}>0$ independent of h s.t.

$$
\begin{equation*}
\forall v_{h} \in V_{h}, \quad C_{\text {sta }}\left\|v_{h}\right\| \leq \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|} \tag{inf-sup}
\end{equation*}
$$

or, equivalently,

$$
C_{\text {sta }} \leq \inf _{v_{h} \in V_{h} \backslash\{0\}} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|v_{h}\right\|\left\|w_{h}\right\|} .
$$

Stability answers the question: Can we solve the discrete problem?

Abstract nonconforming error analysis V

- A sufficient condition for discrete stability is coercivity,

$$
\forall v_{h} \in V_{h}, \quad C_{\text {sta }}\left\|v_{h}\right\|^{2} \leq a_{h}\left(v_{h}, v_{h}\right)
$$

- Discrete coercivity implies (inf-sup) since, for all $v_{h} \in V_{h} \backslash\{0\}$,

$$
C_{\text {sta }}\left\|v_{h}\right\| \leq \frac{a_{h}\left(v_{h}, v_{h}\right)}{\left\|v_{h}\right\|} \leq \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|}
$$

Abstract nonconforming error analysis VI

- For consistency we need to plug u into the first argument of a_{h}
- However, in most cases a_{h} cannot be extended to $V \times V_{h}$

Assumption (Regularity of the exact solution)

We assume that there is $V_{*} \subset V$ s.t.

- a_{h} can be extended to $V_{*} \times V_{h}$ and
- the exact solution u is s.t. $u \in V_{*}$.

Abstract nonconforming error analysis VII

Definition (Consistency)

The discrete problem $\left(\Pi_{h}\right)$ is consistent if for the exact solution $u \in V_{*}$,

$$
\begin{equation*}
a_{h}\left(u, w_{h}\right)=l_{h}\left(w_{h}\right) \quad \forall w_{h} \in V_{h} . \tag{cons.}
\end{equation*}
$$

When consistency holds, u_{h} is the a_{h}-orthogonal projection of u

$$
a_{h}\left(u-u_{h}, w_{h}\right)=0 \quad \forall w_{h} \in V_{h} .
$$

Consistency answers the question: Is the discrete problem representative of the continuous one?

Abstract nonconforming error analysis VIII

■ If $u \in V_{*}$, the error satisfies $u-u_{h} \in V_{* h}$ with

$$
V_{* h}:=V_{*}+V_{h}
$$

- We introduce a second norm $\|\cdot\|_{*}$ s.t.

$$
\forall v \in V_{* h}, \quad\|v\| \leq\|v\|_{*}
$$

Definition (Boundedness)

The discrete bilinear form a_{h} is bounded in $V_{* h} \times V_{h}$ if there is C_{bnd} independent of h s.t.

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad\left|a_{h}\left(v, w_{h}\right)\right| \leq C_{\mathrm{bnd}}\|v\|\left\|_{*}\right\| w_{h} \| .
$$

Abstract nonconforming error analysis IX

Theorem (Abstract error estimate)

Let u solve (Π) and assume $u \in V_{*}$. Then, assuming discrete stability, consistency, and boundedness, it holds

$$
\begin{equation*}
\left\|u-u_{h}\right\| \leq\left(1+\frac{C_{\mathrm{bnd}}}{C_{\mathrm{sta}}}\right) \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*} . \tag{est.}
\end{equation*}
$$

Abstract nonconforming error analysis X

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\| \leq\left\|u-u_{h}\right\| \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*}
$$

Definition (Optimal, quasi-optimal, and suboptimal error estimate)

We say that the above error estimate is

- optimal if $\|\cdot \cdot\|=\| \| \cdot \|_{*}$
- quasi-optimal if $\|\cdot\|\|\neq\| \cdot \|_{*}$, but the lower and upper bounds converge, for smooth u, at the same convergence rate as $h \rightarrow 0$
- suboptimal if the upper bound converges more slowly

Abstract nonconforming error analysis XI

Proof.

- Let $y_{h} \in V_{h}$. Owing to discrete stability and consistency,

$$
\begin{aligned}
\left\|u_{h}-y_{h}\right\| & \leq C_{\text {sta }}^{-1} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(u_{h}-y_{h}, w_{h}\right)}{\left\|w_{h}\right\|} \\
& =C_{\text {sta }}^{-1} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(u-y_{h}, w_{h}\right)+a_{h}\left(u_{h}-u, w_{h}\right)}{\left\|w_{h}\right\|}
\end{aligned}
$$

- Hence, using boundedness,

$$
\left\|u_{h}-y_{h}\right\| \leq C_{\text {sta }}^{-1} C_{\mathrm{bnd}}\left\|u-y_{h}\right\|_{*}
$$

- Estimate (est.) then results from the triangle inequality, the fact that $\left\|u-y_{h}\right\| \leq\left\|u-y_{h}\right\|_{*}$, and that y_{h} is arbitrary in V_{h}

Roadmap for the design of dG methods

1 Extend the continuous bilinear form to $V_{* h} \times V_{h}$ by replacing

$$
\nabla \leftarrow \nabla_{h}
$$

2. Check for stability

■ Remove bothering terms in a consistent way
■ If necessary, tighten stability by penalizing jumps
3 If things have been properly done, consistency is preserved
4 Prove boundedness by appropriately selecting $\|\cdot\| \|_{*}$

Mesh regularity I

- To prove discrete stability, consistency, and boundedness we need basic results such as trace and inverse inequalities
- For convergence, V_{h} must enjoy approximation properties

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*} \leq C_{u} h^{l}
$$

This requires regularity assumptions on the mesh sequence

$$
\mathcal{T}_{\mathcal{H}}:=\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}
$$

Mesh regularity II

Definition (Shape and contact regularity)

The mesh sequence $\mathcal{T}_{\mathcal{H}}$ is shape- and contact-regular if for all $h \in \mathcal{H}, \mathcal{T}_{h}$ admits a matching simplicial submesh \mathfrak{S}_{h} s.t.
(i) There is a $\varrho_{1}>0$, independent of h, s.t.

$$
\forall T^{\prime} \in \mathfrak{S}_{h}, \quad \varrho_{1} h_{T^{\prime}} \leq r_{T^{\prime}}
$$

with $r_{T^{\prime}}$ radius of the largest ball inscribed in T^{\prime};
(ii) There is $\varrho_{2}>0$, independent of h s.t.

$$
\forall T \in \mathcal{T}_{h}, \forall T^{\prime} \in \mathfrak{S}_{T}, \quad \varrho_{2} h_{T} \leq h_{T^{\prime}}
$$

If \mathcal{T}_{h} is itself matching and simplicial, the only requirement is shaperegularity with parameter $\varrho_{1}>0$ independent of h.

Mesh regularity III

Figure: Mesh \mathcal{T}_{h} and matching simplicial submesh \mathfrak{S}_{h}

Mesh regularity IV

- We wish to have optimal approximation properties for

$$
\left(\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right)_{h \in \mathcal{H}},
$$

- Since we consider continuous problems posed in a space V s.t.

$$
V \hookrightarrow L^{2}(\Omega) \equiv L^{2}(\Omega)^{\prime} \hookrightarrow V^{\prime}
$$

it is natural to focus on the L^{2}-orthogonal projector π_{h}^{k} s.t.

$$
\forall v \in L^{2}(\Omega), \quad\left(\pi_{h}^{k} v-v, w_{h}\right)_{L^{2}(\Omega)}=0 \quad \forall w_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)
$$

- This also allows to deal naturally with polyhedral elements

Mesh regularity V

Lemma (Optimal polynomial approximation [Dupont and Scott, 1980])
Let $\mathcal{T}_{\mathcal{H}}$ denote a shape- and contact-regular mesh sequence. Then, for all $h \in \mathcal{H}$, all $T \in \mathcal{T}_{h}$, and all polynomial degree k, it holds

$$
\begin{aligned}
\forall s \in\{0, \ldots, k+1\}, \forall m \in\{0 & , \ldots, s\}, \forall v \in H^{s}(T), \\
& \left|v-\pi_{h}^{k} v\right|_{H^{m}(T)} \leq C_{\mathrm{app}} h_{T}^{s-m}|v|_{H^{s}(T)},
\end{aligned}
$$

where $C_{\text {app }}$ is independent of both T and h.

Part II

Scalar first-order PDES

Outline

4 The continuous setting

5 Centered fluxes

6 Upwind fluxes

The continuous problem I

- We consider the following steady advection-reaction problem:

$$
\begin{aligned}
& \beta \cdot \nabla u+\mu u=f \text { in } \Omega, \\
& u=0 \\
& \text { on } \partial \Omega^{-},
\end{aligned}
$$

where $f \in L^{2}(\Omega)$ and

$$
\partial \Omega^{ \pm}:=\{x \in \partial \Omega \mid \pm \beta(x) \cdot \mathrm{n}(x)>0\}
$$

- We further assume

$$
\mu \in L^{\infty}(\Omega), \quad \beta \in[\operatorname{Lip}(\Omega)]^{d}, \quad \Lambda:=\mu-\frac{1}{2} \nabla \cdot \beta \geq \mu_{0}
$$

- As a starting point, we need a suitable weak formulation

Traces and continuous IBP formula I

- The natural space to look for the solution is the graph space

$$
V:=\left\{v \in L^{2}(\Omega) \mid \beta \cdot \nabla v \in L^{2}(\Omega)\right\}
$$

- V is a Hilbert space when equipped with the inner product

$$
(v, w)_{V}:=(v, w)_{L^{2}(\Omega)}+(\beta \cdot \nabla v, \beta \cdot \nabla w)_{L^{2}(\Omega)}
$$

- To deal with BCs , we study the traces of functions in V in the space

$$
L^{2}(|\beta \cdot \mathrm{n}| ; \partial \Omega):=\left\{v \text { is measurable on } \partial \Omega\left|\int_{\partial \Omega}\right| \beta \cdot \mathrm{n} \mid v^{2}<\infty\right\}
$$

Traces and continuous IBP formula II

Assumption (Inflow/ouflow separation)

We assume henceforth inflow/outflow separation,

$$
\operatorname{dist}\left(\partial \Omega^{-}, \partial \Omega^{+}\right):=\min _{(x, y) \in \partial \Omega^{-} \times \partial \Omega^{+}}|x-y|>0 .
$$

Figure: Counter-example for inflow/outflow separation

Traces and continuous IBP formula III

Lemma (Traces and integration by parts)

In the above framework, the trace operator

$$
\gamma: C^{0}(\bar{\Omega}) \ni v \longmapsto \gamma(v):=\left.v\right|_{\partial \Omega} \in L^{2}(|\beta \cdot \mathrm{n}| ; \partial \Omega)
$$

extends continuously to V, i.e., there is C_{γ} s.t., for all $v \in V$,

$$
\|\gamma(v)\|_{L^{2}(|\beta \cdot \mathbf{n}| ; \partial \Omega)} \leq C_{\gamma}\|v\|_{V} .
$$

Moreover, the following IBP formula holds true: For all $v, w \in V$,

$$
\int_{\Omega}[(\beta \cdot \nabla v) w+(\beta \cdot \nabla w) v+(\nabla \cdot \beta) v w]=\int_{\partial \Omega}(\beta \cdot \mathrm{n}) \gamma(v) \gamma(w) .
$$

Weak formulation and well-posedness I

- We introduce the following bilinear form:

$$
a(v, w):=\int_{\Omega} \mu v w+\int_{\Omega}(\beta \cdot \nabla v) w+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w,
$$

where

$$
x^{\oplus}:=\frac{1}{2}(|x|+x), \quad x^{\ominus}:=\frac{1}{2}(|x|-x)
$$

■ For all $v, w \in V$, the Cauchy-Schwarz inequality together with the bound $\|\gamma(v)\|_{L^{2}(|\beta \cdot n| ; \partial \Omega)} \leq C_{\gamma}\|v\|_{V}$ yield boundedness for a

$$
|a(v, w)| \leq\left(1+\|\mu\|_{L^{\infty}(\Omega)}^{2}\right)^{\frac{1}{2}}\|v\|_{V}\|w\|_{L^{2}(\Omega)}+C_{\gamma}^{2}\|v\|_{V}\|w\|_{V}
$$

Weak formulation and well-posedness II

Lemma (L^{2}-coercivity of a)
The bilinear form a is L^{2}-coercive on V, namely,

$$
\forall v \in V, \quad a(v, v) \geq \mu_{0}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2} .
$$

Weak formulation and well-posedness III

$$
a(v, w):=\int_{\Omega} \mu v w+\int_{\Omega}(\beta \cdot \nabla v) w+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w,
$$

Proof.

For all $v \in V$, IBP yields

$$
\begin{aligned}
a(v, v) & =\int_{\Omega}\left(\mu-\frac{1}{2} \nabla \cdot \beta\right) v^{2}+\int_{\partial \Omega} \frac{1}{2}(\beta \cdot \mathrm{n}) v^{2}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v^{2} \\
& =\int_{\Omega} \Lambda v^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2} \\
& \geq \mu_{0}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2},
\end{aligned}
$$

where we have used the assumption $\Lambda \geq \mu_{0}>0$ to conclude.

Weak formulation and well-posedness IV

$$
\begin{equation*}
\text { Find } u \in V \text { s.t. } a(u, w)=\int_{\Omega} f w \text { for all } w \in V \tag{П}
\end{equation*}
$$

Lemma (Well-posedness and characterization of (Π))

Problem (Π) is well-posed and its solution $u \in V$ is s.t.

$$
\begin{aligned}
\beta \cdot \nabla u+\mu u=f & \text { a.e. in } \Omega \\
u=0 & \text { a.e. in } \partial \Omega^{-} .
\end{aligned}
$$

- Weak formulation with weakly enforced homogeneous inflow BCs
- Extensions possible to inhomogeneous BCs and systems

Roadmap for the design of dG methods

1 Extend the continuous bilinear form to $V_{* h} \times V_{h}$ by replacing

$$
\nabla \leftarrow \nabla_{h}
$$

2. Check for stability

■ Remove bothering terms in a consistent way
■ If necessary, tighten stability by penalizing jumps
3 If things have been properly done, consistency is preserved
4 Prove boundedness by appropriately selecting $\|\cdot\| \|_{*}$

Heuristic derivation I

Assumption (Regularity of exact solution and space V_{*})

We assume that there is a partition $P_{\Omega}=\left\{\Omega_{i}\right\}_{1 \leq i \leq N_{\Omega}}$ of Ω into disjoint polyhedra s.t.

$$
u \in V_{*}:=V \cap H^{1}\left(P_{\Omega}\right) .
$$

Additionally, we set

$$
V_{* h}:=V_{*}+V_{h} .
$$

Lemma (Jumps of u across interfaces)
If $u \in V_{*}$, then, for all $F \in \mathcal{F}_{h}^{i}$,

$$
\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket u \rrbracket_{F}(x)=0 \quad \text { for a.e. } x \in F .
$$

Heuristic derivation II

- Let $V_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), k \geq 1$
- Our starting point is the (consistent) extension of a to $V_{* h} \times V_{h}$,

$$
a_{h}^{(0)}\left(v, w_{h}\right):=\int_{\Omega}\left\{\mu v w_{h}+\left(\beta \cdot \nabla_{h} v\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathbf{n})^{\ominus} v w_{h}
$$

We mimic L^{2}-coercivity at the discrete level by introducing additional consistent terms that vanish when we plug u into the first argument

Heuristic derivation III

■ Element-by-element IBP yields, for all $v_{h} \in V_{h}$,

$$
\begin{aligned}
a_{h}^{(0)}\left(v_{h}, v_{h}\right) & =\int_{\Omega}\left\{\mu v_{h}^{2}+\left(\beta \cdot \nabla_{h} v_{h}\right) v_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2} \\
& =\int_{\Omega} \mu v_{h}^{2}+\sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\beta \cdot \nabla v_{h}\right) v_{h}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2} \\
& =\int_{\Omega} \mu v_{h}^{2}+\sum_{T \in \mathcal{T}_{h}} \int_{T} \frac{1}{2}\left(\beta \cdot \nabla v_{h}^{2}\right)+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2} \\
& =\int_{\Omega} \Lambda v_{h}^{2}+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \frac{1}{2}\left(\beta \cdot \mathrm{n}_{T}\right) v_{h}^{2}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2}
\end{aligned}
$$

where we have used $\Lambda:=\mu-\frac{1}{2} \nabla \cdot \beta$
■ Let us focus on the boundary terms

Heuristic derivation IV

■ Using the continuity of $\left(\beta \cdot \mathrm{n}_{F}\right)$ across all $F \in \mathcal{F}_{h}^{i}$,

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \frac{1}{2}\left(\beta \cdot \mathrm{n}_{T}\right) v_{h}^{2}=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{1}{2}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h}^{2} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F} \frac{1}{2}(\beta \cdot \mathrm{n}) v_{h}^{2}
$$

■ For all $\mathcal{F}_{h}^{i} \ni F=\partial T_{1} \cap \partial T_{2}, v_{i}=\left.v_{h}\right|_{T_{i}}, i \in\{1,2\}$, it holds

$$
\frac{1}{2} \llbracket v_{h}^{2} \rrbracket=\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2}\left(v_{1}-v_{2}\right)\left(v_{1}+v_{2}\right)=\llbracket v_{h} \rrbracket\left\{v_{h}\right\}
$$

Heuristic derivation \vee

- As a result,

$$
\begin{aligned}
a_{h}^{(0)}\left(v_{h}, v_{h}\right)= & \left.\int_{\Omega} \Lambda v_{h}^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{v_{h}\right\}\right\} \\
& +\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F} \frac{1}{2}(\beta \cdot \mathrm{n}) v_{h}^{2}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2}
\end{aligned}
$$

- Combining the two rightmost terms, we arrive at

$$
\left.a_{h}^{(0)}\left(v_{h}, v_{h}\right)=\int_{\Omega} \Lambda v_{h}^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{v_{h}\right\}\right\}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v_{h}^{2}
$$

- The boxed term is nondefinite

Heuristic derivation VI

- A natural idea is to modify $a_{h}^{(0)}$ as follows:

$$
\begin{aligned}
a_{h}^{\text {cf }}\left(v, w_{h}\right):= & \int_{\Omega}\left\{\mu v w_{h}+\left(\beta \cdot \nabla_{h} v\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h} \\
& -\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v \rrbracket\left\{w_{h}\right\}
\end{aligned}
$$

- The highlighted term is consistent since $u \in V_{*}$ implies

$$
\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket u \rrbracket_{F}(x)=0 \quad \text { for a.e. } x \in F
$$

- Moreover, it ensures L^{2}-coercivity since, this time,

$$
a_{h}^{\mathrm{cf}}\left(v_{h}, v_{h}\right)=\int_{\Omega} \Lambda v_{h}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v_{h}^{2} \quad \forall v_{h} \in V_{h}
$$

Heuristic derivation VII

$$
\begin{aligned}
& \int_{\Omega}\left\{\mu v_{h} w_{h}+\left(\beta \cdot \nabla_{h} v_{h}\right) w_{h}\right\}, \int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h} w_{h} \\
& \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{w_{h}\right\}
\end{aligned}
$$

Figure: Stencil of the different terms

Heuristic derivation VIII

$$
\|v\|_{\mathrm{cf}}^{2}:=\tau_{\mathrm{c}}^{-1}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2}, \quad \tau_{\mathrm{c}}:=\left\{\max \left(\|\mu\|_{L^{\infty}(\Omega)}, L_{\beta}\right)\right\}^{-1}
$$

Lemma (Consistency and discrete coercivity)

The discrete bilinear form $a_{h}^{\text {cf }}$ satisfies the following properties:
(i) Consistency, i.e., assuming $u \in V_{*}$,

$$
a_{h}^{\mathrm{cf}}\left(u, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h}
$$

(ii) Coercivity on V_{h} with $C_{\text {sta }}:=\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right)$,

$$
\forall v_{h} \in V_{h}, \quad a_{h}^{\mathrm{cf}}\left(v_{h}, v_{h}\right) \geq C_{\text {sta }}\left\|v_{h}\right\|_{\text {cf }}^{2}
$$

Error estimate I

Lemma (Boundedness)

It holds

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad a_{h}^{\mathrm{cf}}\left(v, w_{h}\right) \leq C_{\mathrm{bnd}}\|v\|_{\mathrm{cf}, *}\left\|w_{h}\right\|_{\mathrm{cf}},
$$

with C_{bnd} independent of h and of μ and β, and with $\beta_{\mathrm{c}}:=\|\beta\|_{\left[L^{\infty}(\Omega)\right]^{d}}$,

$$
\|v\|_{\mathrm{cf}, *}^{2}:=\|v\|_{\mathrm{cf}}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}}\|\beta \cdot \nabla v\|_{L^{2}(T)}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}} \beta_{\mathrm{c}}^{2} h_{T}^{-1}\|v\|_{L^{2}(\partial T)}^{2}
$$

Error estimate II

Find $u_{h} \in V_{h}$ s.t. $a_{h}^{\text {cf }}\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h}$ for all $v_{h} \in V_{h}$

Theorem (Error estimate)

Let u solve (Π) and let u_{h} solve $\left(\Pi_{h}^{\text {cf }}\right)$ with $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), k \geq 1$. Then, it holds,

$$
\left\|u-u_{h}\right\|_{\mathrm{cf}} \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{cf}, *}
$$

with C independent of h and depending on the data only via the factor

$$
C_{\mathrm{sta}}^{-1}=\left\{\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right)\right\}^{-1}
$$

Error estimate III

Corollary (Convergence rate for smooth solutions)

Assume $u \in H^{k+1}(\Omega)$. Then, it holds

$$
\left\|u-u_{h}\right\|_{\mathrm{cf}} \leq C_{u} h^{k},
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h and depending on the data only through the factor $\left\{\min \left(1, \tau_{c} \mu_{0}\right)\right\}^{-1}$.

Proof.

It suffices to let $y_{h}=\pi_{h}^{k} u$ in the error estimate and use the approximation properties of the sequence of discrete spaces $\left(V_{h}\right)_{h \in \mathcal{H}}$.

Error estimate IV

- This estimate is suboptimal by $\frac{1}{2}$ power of h
- Indeed, in the inequalities

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{cf}} \leq\left\|u-u_{h}\right\|_{\mathrm{cf}} \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{cf}, *}
$$

the upper bound converges more slowly than the lower bound

- Also bothering: no convergence for FV $(k=0)$!

$$
\begin{aligned}
\|v\|_{\mathrm{cf}}^{2} & :=\tau_{\mathrm{c}}^{-1}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2} \\
\|v\|_{\mathrm{cf}, *}^{2} & :=\|v\|_{\mathrm{cf}}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}}\|\beta \cdot \nabla v\|_{L^{2}(T)}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}} \beta_{\mathrm{c}}^{2} h_{T}^{-1}\|v\|_{L^{2}(\partial T)}^{2}
\end{aligned}
$$

Numerical fluxes I

$$
\begin{aligned}
a_{h}^{\mathrm{cf}}\left(v, w_{h}\right):= & \int_{\Omega}\left\{\mu v w_{h}+\left(\beta \cdot \nabla_{h} v\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h} \\
& -\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v \rrbracket\left\{\left\{w_{h}\right\}\right\}
\end{aligned}
$$

Lemma (Equivalent expression for a_{h}^{cf})

For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$, it holds

$$
\begin{aligned}
& a_{h}^{\mathrm{cf}}\left(v, w_{h}\right)=\int_{\Omega}\left\{(\mu-\nabla \cdot \beta) v w_{h}-v\left(\beta \cdot \nabla_{h} w_{h}\right)\right\} \\
&+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\oplus} v w_{h}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{\{v\} \llbracket w_{h} \rrbracket .\right.
\end{aligned}
$$

Numerical fluxes II

- IBP of the advective term leads to

$$
\begin{aligned}
a_{h}^{\mathrm{cf}}\left(v, w_{h}\right)=\int_{\Omega} & \left\{(\mu-\nabla \cdot \beta) v w_{h}-v\left(\beta \cdot \nabla_{h} w_{h}\right)\right\} \\
& +\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\beta \cdot \mathrm{n}_{T}\right) v w_{h}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h} \\
& \left.-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v \rrbracket\left\{w_{h}\right\}\right\}
\end{aligned}
$$

- Exploiting the continuity of $\beta \cdot \mathrm{n}_{F}$ we obtain

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\beta \cdot \mathrm{n}_{T}\right) v w_{h}=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v w_{h} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F}(\beta \cdot \mathrm{n}) v w_{h}
$$

Numerical fluxes III

- To conclude we use the magic formula

$$
\begin{aligned}
\llbracket v w_{h} \rrbracket & =v_{1} w_{1}-v_{2} w_{2} \\
& =\frac{1}{2}\left(v_{1}-v_{2}\right)\left(w_{1}+w_{2}\right)+\frac{1}{2}\left(v_{1}+v_{2}\right)\left(w_{1}-w_{2}\right) \\
& =\llbracket v \rrbracket\left\{w_{h}\right\}+\{v v\} \llbracket w_{h} \rrbracket,
\end{aligned}
$$

where $v_{i}:=\left.v\right|_{T_{i}}$ and $w_{i}:=\left.w_{h}\right|_{T_{i}}$ for $i \in\{1,2\}$

Numerical fluxes IV

- We now consider a point of view closer to finite volumes
- Let $T \in \mathcal{T}_{h}$ and $\xi \in \mathbb{P}_{d}^{k}(T)$

■ For a set $S \subset \Omega$, denote by χ_{S} the characteristic function of S s.t.

$$
\chi_{S}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

- With the goal of setting $v_{h}=\xi \chi_{T}$ in $\left(\Pi_{h}^{\text {cf }}\right)$ observe that

$$
\llbracket \xi \chi_{T} \rrbracket=\epsilon_{T, F} \xi \quad \text { with } \quad \epsilon_{T, F}:=\mathrm{n}_{T} \cdot \mathrm{n}_{F}
$$

Numerical fluxes \vee

$$
\begin{aligned}
a_{h}^{\mathrm{cf}}\left(u_{h}, v_{h}\right)=\int_{\Omega}\{ & \left.(\mu-\nabla \cdot \beta) u_{h} v_{h}-u_{h}\left(\beta \cdot \nabla_{h} v_{h}\right)\right\} \\
& +\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\oplus} u_{h} v_{h}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{\left\{u_{h}\right\}\right\} \llbracket v_{h} \rrbracket .
\end{aligned}
$$

- Letting $v_{h}=\xi \chi_{T}$ in the alternative form for a_{h} (cf. above) we infer

$$
a_{h}\left(u_{h}, \xi \chi_{T}\right)=\int_{T}\left\{(\mu-\nabla \cdot \beta) u_{h} \xi-u_{h}(\beta \cdot \nabla \xi)\right\}+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right) \xi=\int_{T} f \xi
$$

where centered numerical flux $\phi_{F}\left(u_{h}\right)$ given by

$$
\phi_{F}\left(u_{h}\right):= \begin{cases}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{u_{h}\right\} & \text { if } F \in \mathcal{F}_{h}^{i} \\ (\beta \cdot \mathrm{n})^{\oplus} u_{h} & \text { if } F \in \mathcal{F}_{h}^{b}\end{cases}
$$

Numerical fluxes VI

- For $\left.\xi\right|_{T} \equiv 1$ we recover the usual FV local conservation: $\forall T \in \mathcal{T}_{h}$,

$$
\int_{T}(\mu-\nabla \cdot \beta) u_{h}+\sum_{F \in \mathcal{F}_{T}} \int_{F} \epsilon_{T, F} \phi_{F}\left(u_{h}\right)=\int_{T} f
$$

- We next modify the numerical flux to recover quasi-optimality

Upwinding I

- The error estimate for centered fluxes is suboptimal
- This can be improved by tightening stability with a least-square penalization of interface jumps
- In terms of fluxes, this approach amounts to introducing upwind
- As a side benefit, we can estimate the advective derivative error

Upwinding II

- We consider the new bilinear form

$$
a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right):=a_{h}^{\mathrm{cf}}\left(v_{h}, w_{h}\right)+s_{h}\left(v_{h}, w_{h}\right)
$$

where, for $\eta>0$, we have introduced the stabilization bilinear form

$$
s_{h}\left(v_{h}, w_{h}\right)=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket
$$

- This term is consistent under the regularity assumption since

$$
\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket u \rrbracket=0 \quad \forall F \in \mathcal{F}_{h}^{i}
$$

Upwinding III

- More explicity, recalling the expression of $a_{h}^{\text {cf }}$,

$$
\begin{aligned}
a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right):= & \int_{\Omega}\left\{\mu v_{h} w_{h}+\left(\beta \cdot \nabla_{h} v_{h}\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h} w_{h} \\
& -\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{\left\{w_{h}\right\}\right\}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket
\end{aligned}
$$

- Or, after element-by-element IBP,

$$
\begin{aligned}
a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right)= & \int_{\Omega}\left\{(\mu-\nabla \cdot \beta) v_{h} w_{h}-v_{h}\left(\beta \cdot \nabla_{h} w_{h}\right)\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\oplus} v_{h} w_{h} \\
& +\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{\left\{v_{h}\right\} \rrbracket \llbracket w_{h} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket\right.
\end{aligned}
$$

Upwinding IV

$$
\int_{\Omega}\left\{\mu v_{h} w_{h}+\left(\beta \cdot \nabla_{h} v_{h}\right) w_{h}\right\}, \int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h} w_{h}
$$

$\sum \int$
$\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket$

Figure: Stencil of the different terms

Upwinding V

Find $u_{h} \in V_{h}$ s.t. $a_{h}^{\text {upw }}\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h}$ for all $v_{h} \in V_{h}$ $\left(\Pi_{h}^{\mathrm{upw}}\right)$

Upwinding VI

$$
\|v\|_{\mathrm{uwb}}^{2}:=\|v\|_{\mathrm{cf}}^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v \rrbracket^{2}
$$

Lemma (Consistency and discrete coercivity)

The discrete bilinear form $a_{h}^{\text {upw }}$ satisfies the following properties:
(i) Consistency, i.e., assuming $u \in V_{*}$,

$$
a_{h}^{\mathrm{upw}}\left(u, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h}
$$

(ii) Coercivity on V_{h} with $C_{\text {sta }}=\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right)$,

$$
\forall v_{h} \in V_{h}, \quad a_{h}^{\mathrm{upw}}\left(v_{h}, v_{h}\right) \geq C_{\text {sta }}\left\|v_{h}\right\|_{\text {uwb }}^{2}
$$

Numerical fluxes

- Proceeding as for $a_{h}^{\text {cf }}$ we infer for all $T \in \mathcal{T}_{h}$,

$$
a_{h}\left(u_{h}, \xi \chi_{T}\right)=\int_{T}\left\{(\mu-\nabla \cdot \beta) u_{h} \xi-u_{h}(\beta \cdot \nabla \xi)\right\}+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right) \xi=\int_{T} f \xi,
$$

where, this time, the numerical flux is s.t.

$$
\phi_{F}\left(u_{h}\right)= \begin{cases}\beta \cdot \mathrm{n}_{F}\left\{\left\{u_{h}\right\}\right\}+\frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket u_{h} \rrbracket & \text { if } F \in \mathcal{F}_{h}^{i}, \\ (\beta \cdot \mathrm{n})^{\oplus} u_{h} & \text { if } F \in \mathcal{F}_{h}^{b}\end{cases}
$$

- The choice $\eta=1$ leads to the classical upwind fluxes

$$
\phi_{F}\left(u_{h}\right)= \begin{cases}\beta \cdot \mathrm{n}_{F} u_{h}^{\uparrow} & \text { if } F \in \mathcal{F}_{h}^{i}, \\ (\beta \cdot \mathrm{n})^{\oplus} u_{h} & \text { if } F \in \mathcal{F}_{h}^{b}\end{cases}
$$

Error estimates based on inf-sup stability I

- We define the stronger norm $\left(\beta_{\mathrm{c}}:=\|\beta\|_{\left[L^{\infty}(\Omega)\right]^{d}}\right)$

$$
\|v\|_{\mathrm{uw} \sharp}^{2}:=\|v\|_{\mathrm{uwb}}^{2}+\sum_{T \in \mathcal{T}_{h}} \beta_{\mathrm{c}}^{-1} h_{T}\|\beta \cdot \nabla v\|_{L^{2}(T)}^{2}
$$

- We assume that the model is well-resolved and that reaction is not dominant

$$
h \leq \beta_{\mathrm{c}} \tau_{\mathrm{c}}
$$

Error estimates based on inf-sup stability II

Lemma (Discrete inf-sup condition for a_{h}^{upw})
There is $C_{\text {sta }}^{\prime}>0$, independent of h, μ, and β, s.t.

$$
\forall v_{h} \in V_{h}, \quad C_{\text {sta }}^{\prime} C_{\text {sta }}\left\|v_{h}\right\|_{\mathrm{uw} \sharp} \leq \mathbb{S}:=\sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|_{\mathrm{uw} \sharp}},
$$

with $C_{\text {sta }}=\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right) \leq 1$ denoting the L^{2}-coercivity constant.

Error estimates based on inf-sup stability III

Lemma (Boundedness)

It holds

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad\left|a_{h}^{\mathrm{upw}}\left(v, w_{h}\right)\right| \leq C_{\mathrm{bnd}}\|v\|_{\mathrm{uw} \sharp, *}\left\|w_{h}\right\|_{\mathrm{uw} \sharp},
$$

with C_{bnd} independent of h, μ, and β and

$$
\|v\|_{\mathrm{uw} \sharp, *}^{2}:=\|v\|_{\mathrm{uw} \sharp}^{2}+\sum_{T \in \mathcal{T}_{h}} \beta_{\mathrm{c}}\left(h_{T}^{-1}\|v\|_{L^{2}(T)}^{2}+\|v\|_{L^{2}(\partial T)}^{2}\right) .
$$

Error estimates based on inf-sup stability IV

Theorem (Error estimate)

Let u solve (Π) and let u_{h} solve ($\left.\Pi_{h}^{\mathrm{upw}}\right)$ where $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ with $k \geq 0$. Then, it holds

$$
\left\|u-u_{h}\right\|_{\mathrm{uw} \sharp} \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{uw} \sharp, *},
$$

with C independent of h and depending on the data only through the factor $\left\{\min \left(1, \tau_{c} \mu_{0}\right)\right\}^{-1}$.

Corollary (Convergence rate for smooth solutions)

Assume $u \in H^{k+1}(\Omega)$. Then, it holds

$$
\left\|u-u_{h}\right\|_{\mathrm{uw} \sharp} \leq C_{u} h^{k+1 / 2},
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h and depending on the data only through the factor $\left\{\min \left(1, \tau_{c} \mu_{0}\right)\right\}^{-1}$.

Part III

Scalar second-order PDEs

Outline

7 Setting

8 Heuristic derivation

9 Convergence analysis

10 Liftings and discrete gradients

Setting I

- For $f \in L^{2}(\Omega)$ we consider the model problem for viscous terms

$$
\begin{aligned}
-\triangle u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

- The weak formulation reads with $V:=H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\text { Find } u \in V \text { s.t. } a(u, v)=\int_{\Omega} f v \text { for all } v \in V \tag{П}
\end{equation*}
$$

where

$$
a(u, v):=\int_{\Omega} \nabla u \cdot \nabla v
$$

Setting II

- The well-posedness of (Π) hinges on Poincaré's inequality,

$$
\forall v \in H_{0}^{1}(\Omega), \quad\|v\|_{L^{2}(\Omega)} \leq C_{\Omega}\|\nabla v\|_{\left[L^{2}(\Omega)\right]^{d}}
$$

- Indeed, a classical result is the coercivity of a,

$$
\forall v \in H_{0}^{1}(\Omega), \quad a(v, v) \geq \frac{1}{1+C_{\Omega}^{2}}\|v\|_{H^{1}(\Omega)}^{2}
$$

Lemma (Continuity of the potential and of the diffusive flux)
Letting $\llbracket v \rrbracket_{F}=\left\{\{v\}_{F}=v\right.$ for all $F \in \mathcal{F}_{h}^{b}$, it holds

$$
\begin{aligned}
\llbracket u \rrbracket & =0 & & \forall F \in \mathcal{F}_{h}, \\
\llbracket \nabla u \rrbracket \cdot \mathrm{n}_{F} & =0 & & \forall F \in \mathcal{F}_{h}^{i} .
\end{aligned}
$$

Setting III

Assumption (Regularity of exact solution and space V_{*})

We assume for the exact solution the regularity $u \in V_{*}$ with

$$
V_{*}:=V \cap H^{2}(\Omega) .
$$

This implies, in particular, that the traces of both u and $\nabla u \cdot \mathrm{n}_{F}$ are square-integrable. We set

$$
V_{* h}:=V_{*}+V_{h} .
$$

Roadmap for the design of dG methods

1 Extend the continuous bilinear form to $V_{* h} \times V_{h}$ by replacing

$$
\nabla \leftarrow \nabla_{h}
$$

2. Check for stability

■ Remove bothering terms in a consistent way
■ If necessary, tighten stability by penalizing jumps
3 If things have been properly done, consistency is preserved
4 Prove boundedness by appropriately selecting $\|\cdot\| \|_{*}$

Symmetric Interior Penalty: Heuristic derivation I

- We derive a dG method based on the space

$$
V_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), \quad k \geq 1
$$

- For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$ we set, replacing $\nabla \leftarrow \nabla_{h}$,

$$
a_{h}^{(0)}\left(v, w_{h}\right):=\int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h}=\sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla v \cdot \nabla w_{h}
$$

Consistency I

- Integrating by parts element-by-element we arrive at

$$
a_{h}^{(0)}\left(v, w_{h}\right)=-\sum_{T \in \mathcal{T}_{h}} \int_{T}(\triangle v) w_{h}+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla v \cdot \mathrm{n}_{T}\right) w_{h}
$$

- The second term in the RHS can be reformulated as follows:

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla v \cdot \mathrm{n}_{T}\right) w_{h}=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket\left(\nabla_{h} v\right) w_{h} \rrbracket \cdot \mathrm{n}_{F}+\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F}\left(\nabla v \cdot \mathrm{n}_{F}\right) w_{h}
$$

Consistency II

■ Moreover, letting $a_{i}=\left.(\nabla v)\right|_{T_{i}}, b_{i}=\left.w_{h}\right|_{T_{i}}, i \in\{1,2\}$,

$$
\begin{aligned}
\llbracket\left(\nabla_{h} v\right) w_{h} \rrbracket & =a_{1} b_{1}-a_{2} b_{2} \\
& =\frac{1}{2}\left(a_{1}+a_{2}\right)\left(b_{1}-b_{2}\right)+\left(a_{1}-a_{2}\right) \frac{1}{2}\left(b_{1}+b_{2}\right) \\
& =\left\{\left\{\nabla_{h} v\right\} \llbracket w_{h} \rrbracket+\llbracket \nabla_{h} v \rrbracket\left\{w_{h}\right\}\right\} .
\end{aligned}
$$

- As a result, and accounting also for boundary faces,

$$
\left.\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla v \cdot \mathrm{n}_{T}\right) w_{h}=\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket \nabla_{h} v \rrbracket \cdot \mathrm{n}_{F}\left\{\left\{w_{h} \rrbracket\right.\right.
$$

Consistency III

- In conclusion,

$$
\begin{aligned}
a_{h}^{(0)}\left(v, w_{h}\right)= & -\sum_{T \in \mathcal{T}_{h}} \int_{T}(\triangle v) w_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left\{\nabla_{h} v\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket\right. \\
& \left.+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket \nabla_{h} v \rrbracket \cdot \mathrm{n}_{F}\left\{w_{h}\right\}\right\}
\end{aligned}
$$

- To check consistency, set $v=u$. For all $w_{h} \in V_{h}$,

$$
\left.a_{h}^{(0)}\left(u, w_{h}\right)=\int_{\Omega} f w_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F}\{\nabla u\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket
$$

- Hence, to obtain consistency we modify $a_{h}^{(0)}$ as follows:

$$
a_{h}^{(1)}\left(v, w_{h}\right):=\int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h}-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left[\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket
$$

Symmetry I

- A desirable property is symmetry since
- it simplifies the solution of the linear system
- it is used to prove optimal L^{2} error estimates
- Thus, we consider the following symmetric modification of $a_{h}^{(1)}$:

$$
\begin{aligned}
a_{h}^{\mathrm{cs}}\left(v, w_{h}\right):= & \int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h} \\
& \left.-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(\left\{\left\{\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket+\llbracket v \rrbracket\left\{\nabla_{h} w_{h}\right\}\right\} \cdot \mathrm{n}_{F}\right)
\end{aligned}
$$

Symmetry II

■ Element-by-element integration by parts yields

$$
\begin{aligned}
a_{h}^{\mathrm{cs}}\left(v, w_{h}\right)= & -\sum_{T \in \mathcal{T}_{h}} \int_{T}(\triangle v) w_{h}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket \nabla_{h} v \rrbracket \cdot \mathrm{n}_{F}\left\{\left\{w_{h}\right\}\right\} \\
& \left.-\sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket v \rrbracket \llbracket\left\{\nabla_{h} w_{h}\right\}\right\} \cdot \mathrm{n}_{F}
\end{aligned}
$$

- This shows that $a_{h}^{\text {cs }}$ retains consistency since

$$
\begin{aligned}
\llbracket \nabla_{h} u \rrbracket_{F} \cdot \mathrm{n}_{F}=0 & \text { for all } F \in \mathcal{F}_{h}^{i}, \\
\llbracket u \rrbracket_{F}=0 & \text { for all } F \in \mathcal{F}_{h}
\end{aligned}
$$

Coercivity I

- For all $v_{h} \in V_{h}$ it holds

$$
\left.a_{h}^{\mathrm{cs}}\left(v_{h}, v_{h}\right)=\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}-2 \sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\nabla_{h} v_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket v_{h} \rrbracket
$$

- The boxed term is nondefinite
- We further modify $a_{h}^{\text {cs }}$ as follows: For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$,

$$
a_{h}^{\mathrm{sip}}\left(v, w_{h}\right):=a_{h}^{\mathrm{cs}}\left(v, w_{h}\right)+s_{h}\left(v, w_{h}\right)
$$

with the stabilization bilinear form

$$
s_{h}\left(v, w_{h}\right):=\sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v \rrbracket \llbracket w_{h} \rrbracket
$$

Coercivity II

- We aim at asserting coercivity in the norm

$$
\forall v \in V_{* h}, \quad\|v\|_{\text {sip }}:=\left(\left\|\nabla_{h} v\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}+|v|_{J}^{2}\right)^{\frac{1}{2}}
$$

with jump seminorm

$$
|v|_{J}^{2}:=\sum_{F \in \mathcal{F}_{h}} \frac{1}{h_{F}}\|\llbracket v \rrbracket\|_{L^{2}(F)}^{2}
$$

- We anticipate the following discrete Poincaré's inequality:

$$
\forall v_{h} \in V_{h}, \quad\left\|v_{h}\right\|_{L^{2}(\Omega)} \leq \sigma_{2}\left\|v_{h}\right\|_{\text {sip }},
$$

with $\sigma_{2}>0$ is independent of h

Coercivity III

The choice for s_{h} is justified by the following result.
Lemma (Bound on consistency and symmetry terms)
For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$,

$$
\left\lvert\, \sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left.\left[\nabla_{h} v\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket\left|\leq\left(\sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} h_{F}\left\|\left.\nabla v\right|_{T} \cdot \mathrm{n}_{F}\right\|_{L^{2}(F)}^{2}\right)^{\frac{1}{2}}\right| w_{h}\right|_{\mathrm{J}} .\right.\right.
$$

Moreover, if $v=v_{h} \in V_{h}$,

$$
\left|\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left\{\nabla_{h} v_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket\right| \leq C_{\mathrm{tr}} N_{\partial}^{\frac{1}{2}}\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}\left|v_{h}\right|_{\mathrm{J}} .
$$

Coercivity IV

Lemma (Discrete coercivity)

For all $\eta>\underline{\eta}:=C_{\mathrm{tr}}^{2} N_{\partial}$ it holds

$$
\forall v_{h} \in V_{h}, \quad a_{h}^{\text {sip }}\left(v_{h}, v_{h}\right) \geq C_{\eta}\left\|v_{h}\right\|_{\text {sip }}^{2}
$$

with $C_{\eta}:=\left(\eta-C_{\mathrm{tr}}^{2} N_{\partial}\right)(1+\eta)^{-1}$.

Coercivity V

$$
\begin{aligned}
a_{h}^{\operatorname{sip}}\left(v, w_{h}\right)= & \left.\left.\int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h}-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(\left\{\nabla_{h} v\right\}\right] \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket+\llbracket v \rrbracket\left\{\nabla_{h} w_{h}\right\}\right\} \cdot \mathrm{n}_{F}\right) \\
& +\sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v \rrbracket \llbracket w_{h} \rrbracket
\end{aligned}
$$

■ Using the bound on consistency and symmetry terms,

$$
a_{h}^{\mathrm{sip}}\left(v_{h}, v_{h}\right) \geq\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}-2 C_{\mathrm{tr}} N_{\partial}^{1 / 2}\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}\left|v_{h}\right|_{\mathrm{J}}+\eta\left|v_{h}\right|_{\mathrm{J}}^{2}
$$

■ For all $\beta \in \mathbb{R}^{+}, \eta>\beta^{2}, x, y \in \mathbb{R}$, it holds

$$
x^{2}-2 \beta x y+\eta y^{2} \geq \frac{\eta-\beta^{2}}{1+\eta}\left(x^{2}+y^{2}\right)
$$

■ Let $\beta=C_{\operatorname{tr}} N_{\partial}^{1 / 2}, x=\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}, y=\left|v_{h}\right|_{\mathrm{J}}$ to conclude

Coercivity VI

Lemma (Boundedness)

There is C_{bnd}, independent of h, s.t.

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad a_{h}^{\operatorname{sip}}\left(v, w_{h}\right) \leq C_{\mathrm{bnd}}\|v\|_{\mathrm{sip}, *}\left\|w_{h}\right\|_{\text {sip }}
$$

where

$$
\|v\|_{\| \mathrm{sip}, *}=\left(\|v\|_{\mathrm{sip}}^{2}+\sum_{T \in T_{k}} h_{T}\left\|\left.\nabla v\right|_{T} \cdot \mathrm{n}_{T}\right\|_{L^{2}(\partial T)}^{2}\right)^{\frac{1}{2}}
$$

Basic energy error estimate I

Find $u_{h} \in V_{h}$ s.t. $a_{h}^{\text {sip }}\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h}$ for all $v_{h} \in V_{h}$

Theorem (Energy error estimate)

Assume $u \in V_{*}$ and $\eta>\underline{\eta}$. Then, there is C, independent of h, s.t.

$$
\left\|u-u_{h}\right\|_{\text {sip }} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{\text {sip }, *}
$$

Basic energy error estimate II

Corollary (Convergence rate in $\|\cdot\|_{\text {sip }}$-norm)
Additionally assume $u \in H^{k+1}(\Omega)$. Then, it holds

$$
\left\|u-u_{h}\right\|_{\text {sip }} \leq C_{u} h^{k},
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h.

- The above estimate shows that convergence requires $k \geq 1$
- For an extension to the lowest-order case, cf. [Di Pietro, 2012]

L^{2}-norm error estimate I

- Using the broken Poincaré inequality of [Brenner, 2004] one can infer

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq \sigma_{2}^{\prime} C_{u} h^{k}
$$

- This estimate is suboptimal by one power in h
- An optimal estimate can be recovered exploiting symmetry
- Further regularity for the problem needs to be assumed

L^{2}-norm error estimate II

Definition (Elliptic regularity)

Elliptic regularity holds true for the model problem (Π) if there is $C_{\text {ell }}$, only depending on Ω, s.t., for all $\psi \in L^{2}(\Omega)$, the solution to the problem,

$$
\text { Find } \zeta \in H_{0}^{1}(\Omega) \text { s.t. } a(\zeta, v)=\int_{\Omega} \psi v \text { for all } v \in H_{0}^{1}(\Omega)
$$

is in V_{*} and satisfies

$$
\|\zeta\|_{H^{2}(\Omega)} \leq C_{\mathrm{ell}}\|\psi\|_{L^{2}(\Omega)}
$$

Elliptic regularity holds, e.g., if the domain Ω is convex [Grisvard, 1992]

L^{2}-norm error estimate III

Theorem (L^{2}-norm error estimate)

Let $u \in V_{*}$ solve (Π) and assume elliptic regularity. Then, there is C, independent of h, s.t.

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h\left\|u-u_{h}\right\|_{\text {sip }, *} .
$$

Corollary (Convergence rate in $\|\cdot\|_{L^{2}(\Omega)}$-norm)

Additionally assume $u \in H^{k+1}(\Omega)$. Then, it holds

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C_{u} h^{k+1} .
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h.

Liftings I

- Liftings map jumps onto vector-valued functions defined on elements
- Liftings play a key role in several developments
- Flux and mixed formulations
- Computable lower bound for η
- Convergence for nonlinear problems

■ Key application: dG methods for the Navier-Stokes problem

Liftings II

- For an integer $l \geq 0$, we define the (local) lifting operator

$$
\mathrm{r}_{F}^{l}: L^{2}(F) \longrightarrow\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d},
$$

as follows: For all $\varphi \in L^{2}(F)$,

$$
\int_{\Omega} \mathrm{r}_{F}^{l}(\varphi) \cdot \tau_{h}=\int_{F}\left\{\left\{\tau_{h}\right\}\right\} \cdot \mathrm{n}_{F} \varphi \quad \forall \tau_{h} \in\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}
$$

- We observe that $\operatorname{supp}\left(\mathrm{r}_{F}^{l}\right)=\bigcup_{T \in \mathcal{T}_{F}} \bar{T}$

Liftings III

- For all $l \geq 0$ and $v \in H^{1}\left(\mathcal{T}_{h}\right)$, we define the (global) lifting

$$
\mathrm{R}_{h}^{l}(\llbracket v \rrbracket):=\sum_{F \in \mathcal{F}_{h}} \mathrm{r}_{F}^{l}(\llbracket v \rrbracket) \in\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}
$$

■ $\mathrm{R}_{h}^{l}(\llbracket v \rrbracket)$ maps the jumps of v into a global, vector-valued volumic contribution which is homogeneous to a gradient

Discrete gradient I

- For $l \geq 0$, we define the discrete gradient operator

$$
G_{h}^{l}: H^{1}\left(\mathcal{T}_{h}\right) \longrightarrow\left[L^{2}(\Omega)\right]^{d}
$$

as follows: For all $v \in H^{1}\left(\mathcal{T}_{h}\right)$,

$$
G_{h}^{l}(v):=\nabla_{h} v-\mathrm{R}_{h}^{l}(\llbracket v \rrbracket)
$$

- The discrete gradient accounts for inter-element and boundary jumps

Lemma (Bound on discrete gradient)
Let $l \geq 0$. For all $v \in H^{1}\left(\mathcal{T}_{h}\right)$, it holds

$$
\left\|G_{h}^{l}(v)\right\|_{\left[L^{2}(\Omega)\right]^{d}} \leq\left(1+C_{\mathrm{tr}}^{2} N_{\partial}\right)^{\frac{1}{2}}\|v\|_{\text {sip }}
$$

Reformulation of $a_{h}^{\text {sip }}$ ।

- Let $l \in\{k-1, k\}$ and set $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ with $k \geq 1$
- It holds for all $v_{h}, w_{h} \in V_{h}$,

$$
a_{h}^{\mathrm{cs}}\left(v_{h}, w_{h}\right)=\int_{\Omega} \nabla_{h} v_{h} \cdot \nabla_{h} w_{h}-\int_{\Omega} \nabla_{h} v_{h} \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)-\int_{\Omega} \nabla_{h} w_{h} \cdot \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right)
$$

■ Indeed $\nabla_{h} v_{h} \in\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}$ with $l \geq k-1$,

$$
\left.\forall F \in \mathcal{F}_{h}, \quad \int_{F}\left\{\nabla_{h} v_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket=\int_{\Omega} \nabla_{h} v_{h} \cdot \mathrm{r}_{F}^{l}\left(\llbracket w_{h} \rrbracket\right)
$$

- Using the definition of discrete gradients,

$$
a_{h}^{\mathrm{cs}}\left(v_{h}, w_{h}\right)=\int_{\Omega} G_{h}^{l}\left(v_{h}\right) \cdot G_{h}^{l}\left(w_{h}\right)-\int_{\Omega} \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right) \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)
$$

Reformulation of $a_{h}^{\text {sip }}$ II

- Plugging the above expression into $a_{h}^{\text {sip }}$,

$$
a_{h}^{\operatorname{sip}}\left(v_{h}, w_{h}\right)=\int_{\Omega} G_{h}^{l}\left(v_{h}\right) \cdot G_{h}^{l}\left(w_{h}\right)+\hat{s}_{h}^{\operatorname{sip}}\left(v_{h}, w_{h}\right)
$$

with

$$
\hat{s}_{h}^{\mathrm{sip}}\left(v_{h}, w_{h}\right):=\sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket-\int_{\Omega} \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right) \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)
$$

- Dropping the negative term in $\hat{s}_{h}^{\text {sip }}$ leads to the Local Discontinuous Galerkin (LDG) method of [Cockburn and Shu, 1998]
- This method has the drawback of having a significantly larger stencil

Reformulation of $a_{h}^{\operatorname{sip}}$ III

$$
\begin{aligned}
& \int_{\Omega} \nabla_{h} v_{h} \cdot \nabla_{h} w_{h} \\
& \int_{\Omega}\left(\nabla_{h} v_{h} \cdot R_{h}^{l}\left[\left[w_{h}\right]\right)+\nabla_{h} w_{h} \cdot R_{h}^{h}\left(\left[v_{h}\right]\right)\right), \\
& \sum_{F \in \in_{h}} \frac{\eta}{h_{F}} \int_{F}^{\left[v_{h}\right]\left[w_{h}\right]} \\
& \int_{\Omega} R_{h}^{h}\left[\left[u_{h}\right]\right) \cdot R_{h}^{h}\left(\left[v_{h}\right]\right) \cdot \int_{\Omega} G_{h}^{l}\left(v_{h}\right) \cdot G_{h}^{h}\left(w_{h}\right)
\end{aligned}
$$

Figure: Stencil of the different terms

Reformulation of $a_{h}^{\text {sip }} \mathrm{IV}$

Lemma (Coercivity (alternative form))

For all $v_{h} \in V_{h}$,

$$
\left\|G_{h}\left(v_{h}\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}+\left(\eta-C_{\mathrm{tr}}^{2} N_{\partial}\right)\left|v_{h}\right|_{J}^{2} \leq a_{h}\left(v_{h}, v_{h}\right)
$$

Proof.

Observe that

$$
a_{h}\left(v_{h}, v_{h}\right)=\left\|G_{h}\left(v_{h}\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}+\eta\left|v_{h}\right|_{\mathrm{J}}^{2}-\left\|R_{h}\left(\llbracket v_{h} \rrbracket\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2},
$$

and use the L^{2}-stability of R_{h} to conclude.

Numerical fluxes I

■ Let $T \in \mathcal{T}_{h}, \xi \in \mathbb{P}_{d}^{k}(T)$. Element-by-element IBP yields

$$
\int_{T} f \xi=-\int_{T}(\Delta u) \xi=\int_{T} \nabla u \cdot \nabla \xi-\int_{\partial T}\left(\nabla u \cdot \mathrm{n}_{T}\right) \xi .
$$

■ Hence, letting $\Phi_{F}(u):=-\nabla u \cdot \mathrm{n}_{F}$ and $\epsilon_{T, F}=\mathrm{n}_{T} \cdot \mathrm{n}_{F}$,

$$
\int_{T} \nabla u \cdot \nabla \xi+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \Phi_{F}(u) \xi=\int_{T} f \xi
$$

- Our goal is to identify a similar local conservation property for u_{h}

Numerical fluxes II

- Using $v_{h}=\xi \chi_{T}$ as test function we obtain

$$
\begin{aligned}
\int_{T} f \xi=a_{h}^{\operatorname{sip}}\left(u_{h}, \xi \chi_{T}\right)= & \left.\int_{T} \nabla u_{h} \cdot \nabla \xi-\sum_{F \in \mathcal{F}_{T}} \int_{F}\left\{(\nabla \xi) \chi_{T}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket u_{h} \rrbracket \\
& -\sum_{F \in \mathcal{F}_{T}} \int_{F}\left\{\nabla_{h} u_{h}\right\} \cdot \mathrm{n}_{F} \llbracket \xi \chi_{T} \rrbracket+\sum_{F \in \mathcal{F}_{T}} \int_{F} \frac{\eta}{h_{F}} \llbracket u_{h} \rrbracket \llbracket \xi \chi_{T} \rrbracket
\end{aligned}
$$

- Let $l \in\{k-1, k\}$. For all $T \in \mathcal{T}_{h}$ and all $\xi \in \mathbb{P}_{d}^{k}(T)$,

$$
\int_{T} G_{h}^{l}\left(u_{h}\right) \cdot \nabla \xi+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right) \xi=\int_{T} f \xi
$$

with

$$
\phi_{F}\left(u_{h}\right):=\underbrace{\left.-\left\{\nabla_{h} u_{h}\right\}\right\} \cdot \mathrm{n}_{F}}_{\text {consistency }}+\underbrace{\frac{\eta}{h_{F}} \llbracket u_{h} \rrbracket}_{\text {penalty }}
$$

Numerical fluxes III

- Taking $\xi \equiv 1$ we infer the FV flux conservation property,

$$
\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right)=\int_{T} f
$$

Also in the elliptic case local conservation holds on the computational mesh (as opposed to vertex- or face-centered dual mesh)

Part IV

Applications in fluid dynamics

Outline

11 Stokes

12 Navier-Stokes

The Stokes problem I

- We consider the flow of a highly viscous fluid
- The governing Stokes equations read

$$
\begin{array}{|rl|}
\hline-\triangle u+\nabla p=f & \text { in } \Omega \\
\nabla \cdot u=0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\langle p\rangle_{\Omega}=0 & \\
\hline
\end{array}
$$

The Stokes problem II

- Let $L_{0}^{2}(\Omega):=\left\{v \in L^{2}(\Omega) \mid\langle v\rangle_{\Omega}=0\right\}$ and set

$$
U:=\left[H_{0}^{1}(\Omega)\right]^{d}, \quad P:=L_{0}^{2}(\Omega), \quad X:=U \times P
$$

- We equip U, P, and X with the following norms

$$
\begin{aligned}
\|v\|_{U} & :=\|v\|_{\left[H^{1}(\Omega)\right]^{d}}:=\left(\sum_{i=1}^{d}\left\|v_{i}\right\|_{H^{1}(\Omega)}^{2}\right)^{1 / 2} \\
\|q\|_{P} & :=\|q\|_{L^{2}(\Omega)}, \\
\|(v, q)\|_{X} & :=\left(\|v\|_{U}^{2}+\|q\|_{P}^{2}\right)^{1 / 2}
\end{aligned}
$$

The Stokes problem III

- For all $(u, p),(v, q) \in X$ let

$$
a(u, v):=\int_{\Omega} \nabla u: \nabla v, \quad b(v, q):=-\int_{\Omega} q \nabla \cdot v, \quad B(v):=\int_{\Omega} f \cdot v,
$$

- The weak formulation reads: Find $(u, p) \in X$ s.t.

$$
\begin{align*}
a(u, v)+b(v, p) & =B(v) & & \forall v \in U, \\
-b(u, q) & =0 & & \forall q \in P \tag{S}
\end{align*}
$$

- $\left(\Pi_{\mathrm{S}}\right)$ is a constrained energy minimization problem
- The pressure is the Lagrange multiplier of the incompressibility constraint

The Stokes problem IV

- Equivalently, defining the bilinear form $S \in \mathcal{L}(X \times X, \mathbb{R})$ s.t.

$$
S((u, p),(v, q)):=a(u, v)+b(v, p)-b(u, q),
$$

we can formulate the problem as

$$
\text { Find }(u, p) \in X \text { s.t. } S((u, p),(v, q))=B(v) \text { for all }(v, q) \in X
$$

The Stokes problem V

- Well-posedness hinges on the coercivity of a and on the inf-sup on b

$$
\inf _{q \in P \backslash\{0\}} \sup _{v \in U \backslash\{0\}} \frac{b(v, q)}{\|v\|_{U}\left\|_{q}\right\|_{P}} \geq \beta_{\Omega}>0
$$

- Equivalently,

$$
\forall q \in P, \quad \beta_{\Omega}\|q\|_{P} \leq \sup _{v \in U \backslash\{0\}} \frac{b(v, q)}{\|v\|_{U}}
$$

The Stokes problem VI

Lemma (Surjectivity of the divergence operator from U to P)
Let $\Omega \in \mathbb{R}^{d}, d \geq 1$, be a connected domain. Then, there exists $\beta_{\Omega}>0$ s.t. for all $q \in P$, there is $v \in U$ satisfying

$$
q=\nabla \cdot v \quad \text { and } \quad \beta_{\Omega}\|v\|_{U} \leq\|q\|_{P} .
$$

Proof.

See, e.g., [Girault and Raviart, 1986].

The Stokes problem VII

Proof of the continuous inf-sup condition

Let $q \in P$ and let $v \in U$ denote its velocity lifting. The case $v=0$ is trivial, so let us suppose $v \neq 0$:

$$
\begin{aligned}
\|q\|_{P}^{2} & =\int_{\Omega} q \nabla \cdot v=-b(v, q) \\
& \leq \sup _{w \in U \backslash\{0\}} \frac{b(w, q)}{\|w\|_{U}}\|v\|_{U} \\
& \leq \beta_{\Omega}^{-1} \sup _{w \in U \backslash\{0\}} \frac{b(w, q)}{\|w\|_{U}}\|q\|_{P}
\end{aligned}
$$

and the conclusion follows.

Equal-order discretization I

- For an integer $k \geq 1$ define the following spaces:

$$
U_{h}:=\left[\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right]^{d}, \quad P_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right) \cap L_{0}^{2}(\Omega), \quad X_{h}:=U_{h} \times P_{h}
$$

- Discrete pressure-velocity coupling: For all $\left(v_{h}, q_{h}\right) \in X_{h}$, set

$$
\begin{aligned}
b_{h}\left(v_{h}, q_{h}\right) & \left.:=-\int_{\Omega}\left(\nabla_{h} \cdot v_{h}\right) q_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket v_{h} \rrbracket \cdot \mathrm{n}_{F}\left\{q_{h}\right\}\right\}=-\int_{\Omega} D_{h}^{l}\left(v_{h}\right) q_{h} \\
& \left.=\int_{\Omega} v_{h} \cdot \nabla q_{h}-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{v_{h}\right\}\right\} \cdot \mathbf{n}_{F} \llbracket q_{h} \rrbracket,
\end{aligned}
$$

with $l=k$ and

$$
D_{h}^{l}\left(v_{h}\right):=\operatorname{tr}\left(G_{h}^{l}\left(v_{h}\right)\right)=\nabla_{h} \cdot v_{h}-\operatorname{tr}\left(R_{h}^{l}\left(\llbracket v_{h} \rrbracket\right)\right)
$$

Equal-order discretization II

- Extending b_{h} to $\left[H^{1}\left(\mathcal{T}_{h}\right)\right]^{d} \times H^{1}\left(\mathcal{T}_{h}\right)$, consistency is expressed as

$$
\begin{array}{ll}
\forall\left(v, q_{h}\right) \in U \times P_{h}, & b_{h}\left(v, q_{h}\right)=-\int_{\Omega} q_{h} \nabla \cdot v, \\
\forall\left(v_{h}, q\right) \in U_{h} \times H^{1}(\Omega), & b_{h}\left(v_{h}, q\right)=\int_{\Omega} v_{h} \cdot \nabla q,
\end{array}
$$

since, for all $v \in U$ and all $q \in H^{1}(\Omega)$,

$$
\begin{array}{ll}
\llbracket v \rrbracket=0 & \forall F \in \mathcal{F}_{h} \\
\llbracket q \rrbracket=0 & \forall F \in \mathcal{F}_{h}^{i}
\end{array}
$$

Equal-order discretization III

Lemma (Discrete generalized inf-sup condition)

There is $\beta>0$ independent of h s.t. s.t.

$$
\forall q_{h} \in P_{h}, \quad \beta\left\|q_{h}\right\|_{P} \leq \sup _{v_{h} \in U_{h} \backslash\{0\}} \frac{b_{h}\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{\mathrm{dG}}}+\left|q_{h}\right|_{p}
$$

where

$$
\left|q_{h}\right|_{p}^{2}:=\sum_{F \in \mathcal{F}_{h}^{i}} h_{F}\left\|\llbracket q_{h} \rrbracket\right\|_{L^{2}(F)}^{2}
$$

Equal-order discretization IV

- We stabilize the pressure-velocity coupling using the bilinear form

$$
\forall\left(p_{h}, q_{h}\right) \in P_{h}, \quad s_{h}\left(p_{h}, r_{h}\right):=\sum_{F \in \mathcal{F}_{h}^{i}} h_{F} \int_{F} \llbracket p_{h} \rrbracket \llbracket q_{h} \rrbracket
$$

- The discrete counterpart of S is $S_{h} \in \mathcal{L}\left(X_{h} \times X_{h}, \mathbb{R}\right)$ s.t.

$$
\begin{aligned}
S_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right) & := \\
a_{h}\left(u_{h}, v_{h}\right) & +b_{h}\left(v_{h}, p_{h}\right)-b_{h}\left(u_{h}, q_{h}\right)+s_{h}\left(p_{h}, q_{h}\right),
\end{aligned}
$$

where

$$
a_{h}(w, v):=\sum_{i=1}^{d} a_{h}^{\operatorname{sip}}\left(w_{i}, v_{i}\right)
$$

Equal-order discretization V

- The discrete problem reads: Find $\left(u_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{equation*}
S_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right)=B\left(v_{h}\right) \quad \forall\left(v_{h}, q_{h}\right) \in X_{h} \tag{S,h}
\end{equation*}
$$

- Equivalently: Find $\left(u_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{aligned}
a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(v_{h}, p_{h}\right) & =B\left(v_{h}\right) & & \forall v_{h} \in U_{h} \\
-b_{h}\left(u_{h}, q_{h}\right)+s_{h}\left(p_{h}, q_{h}\right) & =0 & & \forall q_{h} \in P_{h}
\end{aligned}
$$

- This corresponds to a linear system of the form

$$
\left[\begin{array}{cc}
\mathbf{A}_{h} & \mathbf{B}_{h} \\
-\mathbf{B}_{h}^{t} & \mathbf{C}_{h}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{P}_{h}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{F}_{h} \\
\mathbf{0}
\end{array}\right]
$$

Stability I

- Equip X_{h} with the the following norm:

$$
\left\|\left(v_{h}, q_{h}\right)\right\|_{\mathrm{S}}^{2}:=\left\|v_{h}\right\|_{\text {vel }}^{2}+\left\|q_{h}\right\|_{P}^{2}+\left|q_{h}\right|_{p}^{2}
$$

where

$$
\|v\|_{\mathrm{vel}}^{2}:=\sum_{i=1}^{d}\left\|v_{i}\right\|_{\mathrm{sip}}^{2}
$$

- Owing to partial coercivity,

$$
\forall\left(v_{h}, q_{h}\right) \in X_{h}, \quad \alpha\left\|v_{h}\right\|_{\text {vel }}^{2}+\left|q_{h}\right|_{p}^{2} \leq S_{h}\left(\left(v_{h}, q_{h}\right),\left(v_{h}, q_{h}\right)\right)
$$

Stability II

Lemma (Discrete inf-sup for S_{h})

There is $c_{S}>0$ independent of h s.t., for all $\left(v_{h}, q_{h}\right) \in X_{h}$,

$$
c_{S}\left\|\left(v_{h}, q_{h}\right)\right\|_{\mathrm{S}} \leq \sup _{\left(w_{h}, r_{h}\right) \in X_{h} \backslash\{0\}} \frac{S_{h}\left(\left(v_{h}, q_{h}\right),\left(w_{h}, r_{h}\right)\right)}{\left\|\left(w_{h}, r_{h}\right)\right\|_{\mathrm{S}}} .
$$

Proof.

Consequence of the coercivity of a_{h} and the discrete inf-sup on b_{h}.

Convergence to smooth solutions I

Assumption (Regularity of the exact solution and space X_{*})

We assume that the exact solution (u, p) is in $X_{*}:=U_{*} \times P_{*}$ where

$$
U_{*}:=U \cap\left[H^{2}(\Omega)\right]^{d}, \quad P_{*}:=P \cap H^{1}(\Omega) .
$$

Additionally, we set

$$
U_{* h}:=U_{*}+U_{h}, \quad P_{* h}:=P_{*}+P_{h}, \quad X_{* h}:=X_{*}+X_{h} .
$$

Lemma (Jumps of ∇u and p across interfaces)
Assume $(u, p) \in X_{*}$. Then,

$$
\llbracket \nabla u \rrbracket \cdot \mathrm{n}_{F}=0 \quad \text { and } \quad \llbracket p \rrbracket=0 \quad \forall F \in \mathcal{F}_{h}^{i} .
$$

Convergence to smooth solutions II

Lemma (Consistency)

Assume that $(u, p) \in X_{*}$. Then,

$$
S_{h}\left((u, p),\left(v_{h}, q_{h}\right)\right)=\int_{\Omega} f \cdot v_{h} \quad \forall\left(v_{h}, q_{h}\right) \in X_{h} .
$$

Convergence to smooth solutions III

- We have proved an inf-sup condition for S_{h}
- It remains to investigate the boundedness of S_{h}
- Defining the augmented norm

$$
\|(v, q)\|_{\text {sto }, *}^{2}:=\|(v, q)\|_{\text {sto }}^{2}+\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\left.\nabla v\right|_{T} \cdot \mathrm{n}_{T}\right\|_{L^{2}(\partial T)}^{2}+\sum_{T \in \mathcal{T}_{h}} h_{T}\|q\|_{L^{2}(\partial T)}^{2},
$$

for all $\forall(v, q) \in X_{* h},\left(w_{h}, r_{h}\right) \in X_{h}$, with $C_{\text {bnd }}$ independent of h,

$$
S_{h}\left((v, q),\left(w_{h}, r_{h}\right)\right) \leq C_{\mathrm{bnd}}\|(v, q)\|_{\text {sto }, *}\left\|\left(w_{h}, r_{h}\right)\right\|_{\text {sto }}
$$

Convergence to smooth solutions IV

Theorem ($\|\cdot\|_{\text {sto }}$-norm error estimate and convergence rate)
Then, there is C, independent of h, s.t.

$$
\left\|\left(u-u_{h}, p-p_{h}\right)\right\|_{\text {sto }} \leq C \inf _{\left(v_{h}, q_{h}\right) \in X_{h}}\left\|\left(u-v_{h}, p-q_{h}\right)\right\|_{\text {sto }, * \cdot} .
$$

Moreover, if $(u, p) \in\left[H^{k+1}(\Omega)\right]^{d} \times H^{k}(\Omega)$,

$$
\left\|\left(u-u_{h}, p-p_{h}\right)\right\|_{\text {sto }} \leq C_{u, p} h^{k},
$$

with $C_{u, p}=C\left(\|u\|_{\left[H^{k+1}(\Omega)\right]^{d}}+\|p\|_{H^{k}(\Omega)}\right)$.

Convergence to minimal regularity solutions I

Theorem (Convergence to minimal regularity solutions)

Let $\left(u_{\mathcal{H}}, p_{\mathcal{H}}\right):=\left(\left(u_{h}, p_{h}\right)\right)_{h \in \mathcal{H}}$ solve $\left(\Pi_{\mathrm{S}, h}\right)$ on the admissible mesh sequence $\mathcal{T}_{\mathcal{H}}$. Then, as $h \rightarrow 0$,

$$
\begin{aligned}
u_{h} & \rightarrow u \quad & \text { strongly in }\left[L^{2}(\Omega)\right]^{d}, \\
G_{h}\left(u_{h}\right) & \rightarrow \nabla u \quad & \text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\nabla_{h} u_{h} & \rightarrow \nabla u \quad & \text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\left|u_{h}\right|_{\mathrm{J}} & \rightarrow 0, & \\
p_{h} & \rightarrow p & \text { strongly in } L^{2}(\Omega), \\
\left|p_{h}\right|_{p} & \rightarrow 0, &
\end{aligned}
$$

where $(u, p) \in X$ is the unique solution to $\left(\Pi_{\mathrm{S}}\right)$.

Convergence to minimal regularity solutions II

Lemma (A priori estimate)

The problem $\left(\Pi_{\mathrm{S}, h}\right)$ is well-posed with the following a priori estimate:

$$
\left\|\left(u_{h}, p_{h}\right)\right\|_{\mathrm{S}} \leq \frac{\sigma_{2}}{c_{S}}\|f\|_{\left[L^{2}(\Omega)\right]^{d}} .
$$

- A priori estimate + discrete Rellich theorem [DP \& Ern, 10]: convergence of $\left(u_{\mathcal{H}}, p_{\mathcal{H}}\right)$ up to a subsequence
- Test using regular functions and conclude using density that the limit solves $\left(\Pi_{S}\right)$
- Use continuous uniqueness to infer that the whole sequence converges
- Use partial coercivity to prove convergence of the gradients

The incompressible Navier-Stokes problem I

- The Navier-Stokes problem reads

$$
\begin{aligned}
-\nu \triangle u+(u \cdot \nabla) u+\nabla p & =f & & \text { in } \Omega \\
\nabla \cdot u & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega \\
\langle p\rangle_{\Omega} & =0 & &
\end{aligned}
$$

- The nonlinear advection term is the physical source of turbulence
- Uniqueness holds only under a suitable small data assumption

The incompressible Navier-Stokes problem II

- We introduce the trilinear form $t \in \mathcal{L}(U \times U \times U, \mathbb{R})$ is such that

$$
t(w, u, v):=\int_{\Omega}(w \cdot \nabla u) \cdot v=\int_{\Omega} \sum_{i, j=1}^{d} w_{j}\left(\partial_{j} u_{i}\right) v_{i} .
$$

- The weak formulation reads: Find $(u, p) \in X$ s.t., for all $(v, q) \in X$,

$$
\begin{equation*}
\nu a(u, v)+b(v, p)+t(u, u, v)-b(u, q)=B(v) \tag{NS}
\end{equation*}
$$

The incompressible Navier-Stokes problem III

Lemma (Skew-symmetry of trilinear form)

Letting

$$
t^{\prime}(w, u, v):=t(w, u, v)+\frac{1}{2} \int_{\Omega}(\nabla \cdot w) u \cdot v
$$

it holds, for all $w \in U$,

$$
\forall v \in U, \quad t^{\prime}(w, v, v)=0
$$

Moreover, if $w \in V:=\{v \in U \mid \nabla \cdot v=0\}$,

$$
\forall v \in U, \quad t(w, v, v)=0
$$

The incompressible Navier-Stokes problem IV

- Let $w \in U$. We observe that, for all $v \in U$,

$$
t(w, v, v)+\frac{1}{2} \int_{\Omega}(\nabla \cdot w)|v|^{2}=\int_{\Omega} \frac{1}{2} w \cdot \nabla|v|^{2}+\frac{1}{2} \int_{\Omega}(\nabla \cdot w)|v|^{2}=\int_{\Omega} \frac{1}{2} \nabla \cdot\left(w|v|^{2}\right),
$$

- The divergence theorem yields

$$
t(w, v, v)+\frac{1}{2} \int_{\Omega}(\nabla \cdot w)|v|^{2}=\frac{1}{2} \int_{\partial \Omega}(w \cdot \mathrm{n})|v|^{2}=0
$$

since ($w \cdot \mathrm{n}$) vanishes on $\partial \Omega$ thus proving the first point

- The second point is an immediate consequence of the first

The incompressible Navier-Stokes problem V

■ As a consequence, letting $(v, q)=(u, p)$ in $\left(\Pi_{\mathrm{NS}}\right)$,

$$
\nu\|\nabla u\|_{\left[L^{2}(\Omega)\right]^{d, d}}^{2}=\int_{\Omega} f \cdot u
$$

where we have used $\nabla \cdot u=0$

- This shows that convection does not influence energy balance

Design of the discrete trilinear form I

- Our starting point is, for $w_{h}, u_{h}, v_{h} \in U_{h}$,

$$
t_{h}^{(0)}\left(w_{h}, u_{h}, v_{h}\right):=\int_{\Omega}\left(w_{h} \cdot \nabla_{h} u_{h}\right) \cdot v_{h}+\frac{1}{2} \int_{\Omega}\left(\nabla_{h} \cdot w_{h}\right) u_{h} \cdot v_{h}
$$

- Skew-symmetry: For all $w_{h}, v_{h} \in U_{h}$, element-wise IBP yields,
$t_{h}^{(0)}\left(w_{h}, v_{h}, v_{h}\right)=\frac{1}{2} \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w_{h} \rrbracket \cdot \mathrm{n}_{F}\left\{v_{h} \cdot v_{h}\right\}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{w_{h}\right\} \cdot \mathrm{n}_{F} \llbracket v_{h} \rrbracket \cdot\left\{v_{h}\right\}$
- We modify $t_{h}^{(0)}$ as

$$
\begin{array}{r}
t_{h}\left(w_{h}, u_{h}, v_{h}\right):=\int_{\Omega}\left(w_{h} \cdot \nabla_{h} u_{h}\right) \cdot v_{h}-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{\left\{w_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket u_{h} \rrbracket \cdot\left\{\left\{v_{h}\right\}\right\} \\
+\frac{1}{2} \int_{\Omega}\left(\nabla_{h} \cdot w_{h}\right)\left(u_{h} \cdot v_{h}\right)-\frac{1}{2} \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w_{h} \rrbracket \cdot \mathrm{n}_{F}\left\{\left\{u_{h} \cdot v_{h}\right\}\right\}
\end{array}
$$

Design of the discrete trilinear form II

Lemma (Skew-symmetry of discrete trilinear form)
For all $w_{h} \in U_{h}$, it holds

$$
\forall v_{h} \in U_{h}, \quad t_{h}\left(w_{h}, v_{h}, v_{h}\right)=0
$$

Design of the discrete trilinear form III

- Let

$$
\begin{aligned}
& N_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right):= \\
& \quad \nu a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(v_{h}, p_{h}\right)-b_{h}\left(u_{h}, q_{h}\right)+t_{h}\left(u_{h}, u_{h}, v_{h}\right)
\end{aligned}
$$

- The discrete problem reads: Find $\left(u_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{equation*}
N_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right)=B\left(v_{h}\right) \quad \forall\left(v_{h}, q_{h}\right) \in X_{h} \tag{NS,h}
\end{equation*}
$$

- The existence of a solution to $\left(\Pi_{\mathrm{NS}, h}\right)$ can be proved by a topological degree argument

A priori estimate

Lemma (A priori estimate)

There are c_{1}, c_{2} independent of h such that

$$
\left\|\left(u_{h}, p_{h}\right)\right\|_{\mathrm{S}} \leq c_{1}\|f\|_{\left[L^{2}(\Omega)\right]^{d}}+c_{2}\|f\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}
$$

Also in this case, this a priori estimate is instrumental to apply the discrete Rellich theorem of [DP \& Ern, 10]

Convergence to minimal regularity solutions

Theorem (Convergence to minimal regularity solutions)

Let $\left(u_{\mathcal{H}}, p_{\mathcal{H}}\right):=\left(\left(u_{h}, p_{h}\right)\right)_{h \in \mathcal{H}}$ solve $\left(\Pi_{\mathrm{NS}, h}\right)$ on the admissible mesh sequence $\mathcal{T}_{\mathcal{H}}$. Then, as $h \rightarrow 0$ and up to a subsequence,

$$
\begin{aligned}
u_{h} & \rightarrow u \quad & \text { strongly in }\left[L^{2}(\Omega)\right]^{d}, \\
G_{h}\left(u_{h}\right) & \rightarrow \nabla u \quad & \text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\nabla_{h} u_{h} & \rightarrow \nabla u \quad & \text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\left|u_{h}\right|_{\mathrm{J}} & \rightarrow 0, & \\
p_{h} & \rightarrow p & \text { weakly in } L^{2}(\Omega), \\
\left|p_{h}\right|_{p} & \rightarrow 0 . &
\end{aligned}
$$

Moreover, under the small data condition, the whole sequence converges.

Numerical validation I

- Let $\Omega=(-0.5,1.5) \times(0,2)$
- We consider Kovasznay's solution

$$
\begin{aligned}
u_{1} & =1-e^{-\pi x_{2}} \cos \left(2 \pi x_{2}\right) \\
u_{2} & =-\frac{1}{2} e^{\pi x_{1}} \sin \left(2 \pi x_{2}\right) \\
p & =-\frac{1}{2} e^{\pi x_{1}} \cos \left(2 \pi x_{2}\right)-\widetilde{p}
\end{aligned}
$$

with $\widetilde{p} \simeq-0.920735694, \nu=\frac{1}{3 \pi}$ and $f=0$

- $\mathcal{T}_{\mathcal{H}}$ is a family of uniformly refined triuangular meshes, with h ranging from 0.5 down to 0.03125

Numerical validation II

h	$\left\\|e_{h, u}\right\\|_{\left[L^{2}(\Omega)\right]^{d}}$	order	$\left\\|e_{h, p}\right\\|_{L^{2}(\Omega)}$	order	$\left\\|e_{h}\right\\|_{\mathrm{S}}$	order
h_{0}	$8.87 e-01$	-	$1.62 e+00$	-	$1.19 e+01$	-
$h_{0} / 2$	$2.39 e-01$	1.89	$6.11 e-01$	1.41	$7.26 e+00$	0.71
$h_{0} / 4$	$5.94 e-02$	2.01	$2.01 e-01$	1.60	$3.68 e+00$	0.98
$h_{0} / 8$	$1.59 e-02$	1.90	$7.40 e-02$	1.44	$1.85 e+00$	0.99
$h_{0} / 16$	$4.17 e-03$	1.93	$3.14 e-02$	1.23	$9.25 e-01$	1.00

A variation with a simple physical interpretation I

$$
\begin{array}{rlrl}
\partial_{t} u+\nabla \cdot(-\nu \nabla u+F(u, p)) & =f, & & \text { in } \Omega \\
\nabla \cdot u & =0, & & \text { in } \Omega \\
u & =0, & & \text { on } \partial \Omega \\
\int_{\Omega} p & =0 & & \\
\hline
\end{array}
$$

$$
F_{i j}(u, p):=u_{i} u_{j}+p \delta_{i j}
$$

A variation with a simple physical interpretation II

- Let $F \in \mathcal{F}_{h}^{i}, P \in F$ and define

$$
u_{\nu}:=u \cdot \mathrm{n}_{F}, \quad u_{\tau}:=u \cdot \tau_{F}
$$

- Restricting the problem to the normal direction we have

$$
\begin{aligned}
\frac{h_{F}^{2}}{c^{2}} \partial_{t} p+\partial_{x} u_{\nu} & =0, \\
\partial_{t} u_{\nu}+\partial_{x}\left(u_{\nu}^{2}+p\right) & =0, \\
\partial_{t} u_{\tau}+\partial_{x}\left(u_{\nu} u_{\tau}\right) & =0
\end{aligned}
$$

- To recover a hyperbolic problem we add an artificial compressibility term
- The inviscid flux can be obtained as the solution associated Riemann problem with initial datum $\left(u_{h}^{+}, p_{h}^{+}\right),\left(u_{h}^{-}, p_{h}^{-}\right)$at P

A variation with a simple physical interpretation III

Figure: Structure of the Riemann problem.

A variation with a simple physical interpretation IV

- The exact solution can be found using the Riemann invariants (rarefactions) and the Rankine-Hugoniot jump conditions (shocks)
- Following a similar procedure, it is possible to write the Riemann problem associated to the Stokes equations
- Let $\left(u^{*}, p^{*}\right)$ be the solution We define the inviscid flux as

$$
\begin{aligned}
\hat{F}\left(u_{h}^{+}, p_{h}^{+} ; u_{h}^{-}, p_{h}^{-}\right) & :=F\left(u^{*}, p^{*}\right)=u_{i}^{*} u_{j}^{*}+p^{*} \delta_{i j}, \\
\hat{u}\left(u_{h}^{+}, p_{h}^{+} ; u_{h}^{-}, p_{h}^{-}\right) & :=u^{*} .
\end{aligned}
$$

- In the Stokes case, an explicit expression is available for the fluxes

Numerical Fluxes for the Linearized Problems

- We introduce the pressure flux $\hat{p}=p^{*}$ so that $(\hat{u}, \hat{p})=\left(u^{*}, p^{*}\right)$
- In the Stokes case we obtain

$$
\begin{aligned}
& \hat{u}:=\left\{\left\{u_{h}\right\}+\frac{h_{F}}{2 c} \llbracket p_{h} \rrbracket \mathrm{n}_{F},\right. \\
& \left.\hat{p}:=\left\{p_{h}\right\}\right\}+\frac{c}{2 h_{F}} \llbracket u_{h} \rrbracket \cdot \mathrm{n}_{F}
\end{aligned}
$$

- Take $c=2$ and compare with the numerical fluxes for the method we have analyzed!

References I

Arnold, D. N. (1982).
An interior penalty finite element method with discontinuous elements.
SIAM J. Numer. Anal., 19:742-760.
Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2002).
Unified analysis of discontinuous Galerkin methods for elliptic problems.
SIAM J. Numer. Anal., 39(5):1749-1779.
Babuška, I. and Zlámal, M. (1973).
Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal., 10(5):863-875.

Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012).
On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations.
J. Comput. Phys., 231(1):45-65.

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2006).
A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows.
In Wesseling, P., Oñate, E., and Périaux, J., editors, ECCOMAS CFD 2006 Proceedings (Egmond an Zee, Netherlands).

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2007).
An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows.
Comp. \& Fl., 36(10):1529-1546.
Bassi, F. and Rebay, S. (1997).
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.
J. Comput. Phys., 131(2):267-279.

References II

Botti, L. and Di Pietro, D. A. (2011).

A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure.
J. Comput. Phys., 230(3):572-585.

Brenner, S. C. (2004).
Korn's inequalities for piecewise H^{1} vector fields.
Math. Comp., 73(247):1067-1087 (electronic).
Cockburn, B. and Shu, C.-W. (1989).
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework.
Math. Comp., 52(186):411-435.
Cockburn, B. and Shu, C.-W. (1998).
The local discontinuous Galerkin finite element method for convection-diffusion systems.
SIAM J. Numer. Anal., 35:2440-2463.

Di Pietro, D. A. (2012).
Cell centered Galerkin methods for diffusive problems.
M2AN Math. Model. Numer. Anal., 46(1):111-144.
Di Pietro, D. A. and Ern, A. (2010).
Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations.
Math. Comp., 79(271):1303-1330.
Di Pietro, D. A., Ern, A., and Guermond, J.-L. (2008).
Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection.
SIAM J. Numer. Anal., 46(2):805-831.

References III

Di Pietro, D. A., Lo Forte, S., and Parolini, N. (2006).
Mass preserving finite element implementations of the level set method.
App. Num. Math., 56:1179-1195.
DOI: 10.1016/j.apnum.2006.03.003.
Dupont, T. and Scott, R. (1980).
Polynomial approximation of functions in Sobolev spaces.
Math. Comp., 34(150):441-463.
Girault, V. and Raviart, P.-A. (1986).
Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin.
Theory and algorithms.
Grisvard, P. (1992).
Singularities in Boundary Value Problems.
Masson, Paris.
Johnson, C. and Pitkäranta, J. (1986).
An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.
Math. Comp., 46(173):1-26.
Lesaint, P. and Raviart, P.-A. (1974).
On a finite element method for solving the neutron transport equation.
In Mathematical Aspects of Finite Elements in Partial Differential Equations, pages 89-123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York.

References IV

```
Nitsche, J. (1971).
Ober ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen
Randbedingungen unterworfen sind.
Abh. Math. Sem. Univ. Hamburg, 36:9-15.
Collection of articles dedicated to Lothar Collatz on his sixtieth birthday.
Reed, W. H. and Hill, T. R. (1973).
```

Triangular mesh methods for the neutron transport equation.
Technical Report LA-UR-73-0479, http://lib-www.lanl.gov/cgi-bin/getfile?00354107.pdf, Los Alamos Scientific Laboratory, Los Alamos, NM.

