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Governing Equations, Finite
Difference and Finite Volume
Methods



Mass Continuity Equation

Mass Conservation equation

ap+l7 (pu) =0
at P =

Expanding the divergence operator in Cartesian coordinates,

ap O
0t+0x

0 0
(pu,) + 5 (puy) + e (pu;) =0

p = density,t = time
: g, a9~ a7
Vis avector operator: Pyl ay) + - k

—_—

uis avector:u,l + u,j +uk



Momentum and Scalar Transport
Equations

a(pux)
ot

(puxux) + — (puyux) + (puzux) —

aTxx Orxy asz ap
ox oy @ 9z ox PIx

o(puy) | G
ot : ax (puyux) + (puyuy) + 9z (Puz“y) =

0Ty, 0Ty, 61‘ op

ox "oy T oz “ay TPy




Momentum and Scalar Transport
Equations

o(pu,) o o
P A (pugu) + 5y (PUya) + 5 (pususy) =

dt,, O0t,, Jt,, Op
ox  dy | oz oz PY-

] 0 ]
(SZB)_I__( ¢)+_(puy¢)+_(puz¢):

do dp do
9x (F‘P ax) 3y <F¢ ay> 9z <F¢ az> 3

['y is an “exchange” coefficient for that scalar and S is
the source term.




Momentum and Scalar Transport

Equations

T is a tensor with 9 components; It is however
symmetric. For a Newtonian fluid,

. du; , Ou;
- H (ax] + ax,-)
u = u(T), a property of the fluid

_ Ouy auy

For non-Newtonian fluids, the viscosity is a function of
the strain rate. Toothpaste, gels, paints, etc. are
examples non-Newtonian fluids.



Simplifications

Steady flow:
(=0
ot -
Constant density flows

p = constant

One-dimensional flow

a(Pux)

aTxx
9t (puxux) = — 3. +

T PIx



Simplifications
Two-dimensional flows

d 0 d
Py (pux) T Ix (puxux) + O_y (puyux) —

ap aTxx arxy
dx dx ay PYx

Similarly in y direction



Taylor Series Expansions

Consider a continuous function f. Let us assume that all
the derivatives (to the degree of interest) are also finite.
Then

f(x, + Ax) = f(x,) + Axdi + AZZ Zi’; i n
Ax3 d3f ?
31 dx3 . + ...

flx, — Ax) = f(x,) — Ax +AZ"!2 Zi’; -
A; Zz + ..

Xo



Taylor Series Expansions

We can subtract (2) from (1) and write:

f(xo+ Ax) —f(xo— Ax) . ﬂ

Ax?2 d3
= + !
2Ax dx

X, 6 dx3

+ ..

Xo

This series can be truncated by dropping all

derivatives higher than % :

df| [, + Ax) = f(x, — AX)

dx 2Ax

Xo
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Taylor Series Expansions

Now add the two Taylor Expansions
Ax2 LS

f(xo T A.X') — Zf(xo) + f(xo — AX) — A2 +
st aty| g
12 dx*

Xo

d’f|  flxe+ Ax) = 2f(x,) + f(x, — Ax)

dx? Ax?
Xo

Ax? dAf
12 dx*

The neglected term lead with
Xo

11



Other stencils

fll —
f(xo+2Ax)+16f(x,+Ax)—30f(x,)+16f(x,—Ax)—f(x,—2Ax)
12Ax?

+
0(Ax*)
f =
—f(xp+2Ax)+8f(xy+Ax)—8f(xo—Ax)+f(xy—2AX)
12Ax

+ 0(Ax*)

fll — Zf(xO)_sf(xO_Ax)+4f(x0_2Ax)_f(xO_3Ax) _I_ O(sz)

Ax2

All of above can be derived by above procedure
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02T
0xdy

Mixed Derivative

To Discretize the mixed derivative first write

o _om
dxdy  0x \dy 2Ax
Then Ti—l,j+1 o ° °
a_T ~Ti+1,j+1_Ti+1,j—1 Ti—l,j ° Ti,j ° °
ay i+1,j ZAy Ti—l,j—l ° o .
dy i—1,j 2Ay

Tiv1,j+1
Tit1,

Tiv1,j-1

13



FVM

FVM discretizes the PDE by integrating over these discrete control

ﬂax< )d +ﬂay( Zi)‘"’ ’

We assume that there is an average value for the control volume.

k—dy k—dy| +

14



FVM

T
Now we need to evaluatefAy Kyio-dy

oT
fAy kx— a dy

’
X+

at the cell faces.
x_

ax ax

~|

ij

The finite volume expression so far is EXACT. The
challenge now however is to evaluate the
integral using values computed and stored.
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FVM

Midpoint Integration:

oT

Let us assume o varies linearly over the Ay of a given

control volume.

T
Then k ‘ ( ) - A
f 0x/ mid Y
The second task is to relate Z—x to the T calculated at

cell centers. Again if we assume a Imear variation in x,
then

—| = (Tiy1j—Tij)/Ax

X+

16



FVM

Hence in the context of a linear variation, we get the same
stencil as the FDM, if k is constant.

T. o —T.. T..—T. .
s G R

Tiji1—Tij Tij—T;j_1
) ) _ _ ) ) . A —

However, T;; that is calculated is not a point value as in
FDM, except that the average is also the midpoint value
only when the variation is linear If k is not constant, FVM
and FDM have different discrete operators.

17



FVM

Where ki+1]_, ki—lj are evaluated by averaging linearly from
2’ 2’ —
neighbor values. Or ki+1j can be evaluated using Ti+1j where
— 2’ 2"
T. 1. is averaged.
l+E,]

%(ki,j + ki+1,j) or

%(Ti,j + Ti+1,j) and

~
|

Kidy =T (M)

Either procedure has errors, hard to say which one gives less
error. The second scheme includes more local information.
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FVM—Face Values

Consider first the one-dimensional equation

0D Fach
Yox = ax2

Where u is the advection velocity and I' is the
“exchange” coefficient or diffusion coefficient.
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Linear and Upwind Interpolation

Given d)i,j and ¢i+1,j

Ax;
L1, = D 1:+
i+2)  (Axp+Axgq) UL

AXxit1
(Ax;+Axit1)

First order Upwind Interpolation:
( ¢i,j' ui+%’]_ >0
D 1. =1

i+, PD:, 1 u <0
2] k i+1,) i+%,j

20



Second-order upwinding

o I. 1 T i:l o
If u, % > 0, i+1/2
CutT Ot =y %%
If u % <0,
¢i+% = @iy t+ Azx (¢i+1A_x¢i+2) — ;(piﬂ — %¢i+2

21



QUICK (Quadratic Upstream Interpolation

of Convective Kinematics); Leonard (1981)
Interpolation using both upstream and downstream
points

L L L i L L
) i-1 i i+l i +2
i+i/2

Fit a second-order polynomial between two upstream
and one downstream points.

Ifu, 11s >0
l+§

& 3Py + 6P, - D,
i+% B 8
Leonard has further developed new schemes call

UTOPIA, NIRVANA, ULTIMATE, etc.

22



Fromm’s method

Fromm’s method can be seen as average of central
and second-order upwinding

ul_+% > 0;
¢i+¢i 1
0,1 =500 Lo, — 20+ )
2
u 1 <0
l+7

(@, +d,.,) 1
b, = — > = 2 (P2 — 2P 1 + D;)

23



Issues

No equation for pressure

Continuity Equation is a constraint on the
momentum velocities

Pressure has to be computed such that the
velocity field is divergence free

Both steady state and time marching
procedures are possible

Steady state can be obtained by semi-implicit
methods

24



Pressure Poisson Equation

An elliptic partial differential equation can be derived
for pressure. When density is constant,

2. _ 90/ ~u u 0 - Ay v
Vp_ax( C +D)+ay(C+D)

Where C" + DY, CV + DV are advection and diffusion
terms in u and v equations This however requires
knowledge of velocity fields that satisfy the
divergence free condition. We need an iterative
procedure to determine u, v and p. Since the
continuity equation is now a constraint, we need to
find a procedure to determine p.

25



Fractional Step Method

The governing equations are

du 9 d J
p (a': — (uw) > (uv)) = —a—z+u|72u

v a 3 3
p (a: F——(uv) + P (vv)) — 6_5 +uV?v

26



Location of (u, v, p)

Let us consider a finite difference technique
with first order accuracy in time and second-
order accuracy in space. Let us consider first an
algorithm that is explicit in time for advection
and diffusion terms. Consider a two-
dimensional grid with (i,j) as the nodal indices.
Let us locate all three variables (u, v, p) at the
same nodal locations. This arrangement is
called “colocated” arrangement. This contrasts
with “staggered arrangement”.

27



Discretization

n+1 n
ui,j — ui’j

At

Pi-1j — Pi+1,j
n_+ J J

= H
u 2Ax

p

+1
Vi,'n — Vij Pij—1 — Pij+1
p J J _ an_l_ J J

At 2y

H," = (-C*+ D")"
H,” = (—C" + D")"

n+1 n+1 n+1

Ujtqj — Ui n Vij+1 — Vij-1

2Ax 20y =0

28



Pressure-Poisson Equation

1 1
Uirqj + At; (HyMiv1j — Uim1j" — At; (Hy")i-1
2Ax

1 1
Vijy1 T At; (H,")ijy1 —Vij—1" — At; (H,")ij-1

T 2Ay
A (pi+2,jn+1 . p_ n+1 p”n+1 Di_s ]n+1)
B 4Ax?
y (pi,j+2n+1 . p_ n+1 p”n+1 . pi,j—2n+1)
4\y?

29



Simplifying the notation,

Uit1j — Ui-1, i Vij+1 — Vij-1
2Ax 2Ay

At
 4Ax

5 (Pi+2j — 2pij + Pi-2)

At

| 112 (pi,j+2 — 2p;; + pi,j—Z)

30



Structure of the equation

The equation splits pressure in two colors, as
below

O X ®X®
X ® X ® X
O X ® X ®
X ©® X ® X
O X ® X ®

31



The circle points () are related to each other
and the x points >< points are related to each
other. Hence every alternate pressure in i and
alternate pressure in j are related! The
immediate neighbors are not related to each
other. This is called a checker-board pressure
splitting or 2Ax oscillation.

32



Staggered Velocities

Let us write
10 10
untl = ii———pAt; vl — \7———pAt
p 0x p oy
nt1 vt 9u 9V At
ou -+ =—+———|72p

dx ay dx Jdy p

33



V.=

Staggered Velocities

ou 0v Ujqj—Ui—1j Vijr1 — Vij-1

ox ' dy 20x | 24y
Ui — Uy U+ Ui, | Vij+1 — Vij
20X 20X - 2Ay
i7\i,j o i7\i,j—1
2Ay
_ Uir1/2,j — Wi-1/2,] | Viji1/2 — Vij-1/2
B Ax | Ay

e



Staggered Velocities

ui]_n+1_ﬁ” B (ap)n+1
P At - dx
Likewise
Vl']'n+1_‘7l] (ap)n+1
P At B ay
Continuity equation (i,j):
wipr2; w2 Ve v ™ 0
, -

Ax Ay



Staggered Velocities

Now, the important step is to define

n+1 n+1
Uitr1/2,j  and Vijiq/2

. At fap\"t1
u"tl =3 ( p)
p \dx
. At fap\"*1
yitl — ¢ ( P)
p \dy
n+1 ~ At (0dp n§d 1/2,))
U “it1/2j = Uit1/2 p (ax)
B ﬁ | At pi+1,jn+1_pi,jn+1
— Qi+1/2)) p Ax

)
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Continuity Equation

At pi,jn+1_pi—1,jn+1
p Ax

n+1

U “i-1/2j = Ui-1/25

n+1 — S
V™ Tij+1/2 = Vij+1/2

At (pi,j+1n+1 _pi,jn+1)
p Ay

Now we can write the continuity equation at (i,j)
as

+1 +1 +1 +1
Wit1/2)" —Ui—1/2j 0, Vij+1/2 o —Vij-12
| —
~ Ax N . Ay
Uit1/2j—UWUi-1/2j |, Vij+1/27Vij—-1/2
|
Ax Ay
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Pressure-Poisson Equation

At pi+1,jn+1_pi,jn+1 pi,jn+1_pi—1,jn+1 B
pAx Ax Ax

1 1
At (pi,j+1"+1—17i,j"+1) (Pi,j"+ —Pi,j—1"+)

pAy Ay Ay
Simplifying:
1
pir1,"t1-2p; ;" 4piqg n
Ax?
pij—1""1-2pij" 1 4pi i ™tY\  p (ﬁi+1/2,j—ﬁi—1/2,j |
Ay? At Ax |
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Pressure-Poisson Equation

Now we have a well-connected pressure field in which:

Uitr1/2,j0 Wi-1/2jr Vij+1/2) Vij-1/2

satisfy continuity, and

Uis1/2j =~ 5 (Wi + Uir1)
Ui_1/2) & %(ﬁi,j + ;1)

39



Continuity Equation

n+1 _ A At (Pi+1,j—Pi-1,j
Wy T W ( 2A
p X
n+l1 _ - At (Pij+1—Pij-1
Vo i = Vi T (
p 2Ay

The u™!;; and v"*!;; DO NOT satisfy discrete

continuity. The values at u"+1i+1_ and v"t1 ., 1 satisfy

;] )

discrete continuity, but not the discrete momentum
equations.

40
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At

pnx,j o pnx—l,j

Unx+1/2j — (unx—l/Z,j —

p

(

Ax

)

Ax

pnx,j+1 o pnx,j

R R At
+l{v 11—V 1-
nx,j+s nxj-5 p

(

)

42



Summary

Solve for U,V at collocated grid node positions

Evaluate u ,v at (i+1/2,j), (i,j+1/2) positions by
averaging

Evaluate discrete continuity errors in u ,V at (i,j).
Solve pressure Poisson equation at grid nodes
(i,j)

Correct grid node velocities u™""; ;, v
u;;,Vijand p;_1j, Di+1,j Pij+1, Pij—1
March to next time step

Momentum equations are explicit

Pressure equations solved by SOR or other
iterative solvers.

n+1 n+1

ij using

43



Fractional Step Method with Implicit

Diffusion
Momentum Equations with Implicit Diffusion
u—u" n S
p—— = —(conv) " + (DIff)
v—o" o —
p—rp— = —(conv) )" + (DIf)

d (0D d (0D _P ou ov
dx \ 0x ay ay At\dx Ox

& and p are not the same, but related.

44



Momentum Equations

n+1

u Tt —u" __0p 2. n n
P~ = 3, + uv-u™ — (conv)
vn+1_vn B _a_p 2. n n
P~ = o + uVv<v™ — (conv) y
pﬁ;un = —(conv) " + uv*u
un+1 — 1 — 99 ) At
x p
At oD
Vzun+1 — VZii T VZ T
u u U P Ix

45



Momentum Equations

un+1_un oD 9 ~ n
p—F =~ tHuV u— (conv) ,

vn+1_vn oD 2 A n
p—F— = 7 + uVv<v — (conv) y

Subtracting the u equations from each other

uvz (i — u")—i( —p + D)
a
uvi(@ —v™) =a—(—P+¢)

It can be shown that p = @ — u ‘v

46



Relative Nature of @ (and p).

The pressure Poisson equation is ill-
conditioned in the sense that there is one less
equation. The sum of all local continuity
equations is the global continuity equation.
Hence if the @ (or p) equations is solved
directly, it will come up with an error. Only
iterative solvers can be used. Another option
is to add another equation which fixes the
pressure level at any arbitrary location.

p(iref»jref) = Pref

49



Adams-Bashforth Differencing

u-u" 3 n 1 n—1
P = ] (conv) =~ + ; (conv) .= ~ +
E (quii + quun)
v-u" 3 n 1 n—1
P = 21(conv) y, T 2(conv) y T
> (nV29 4 pv?vt)
0 (09 0 (3@) _
utl = 34 0P At ox \ Ox dy\dy /)
dx p ~ A~
p [(0u N ov
prtl — 5 92 2 At\dx 0dy
50
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Implicit Convection Schemes

If time accuracy is not of much concern, we
should be able to take larger time steps either
to reach steady state quickly, or to study longer
transients. In such cases, explicit schemes for
convection may not be optimal. Implicit
diffusion and implicit convection schemes may
take less time overall, although work per time
step can be greater.

51



The SIMPLE Algorithm
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SIMPLE

SIMPLE stands for Semi-Implicit-Method for
Pressure Linked Equations. It is a finite volume
method that uses a staggered grid.

Iterative vs. time marching

Primary emphasis on steady-state flow fields
compared to time evolution. Can be used for long
term transients.

SIMPLE is a guess and correct algorithm to satisfy
the momentum and continuity equations.

53



Staggered Mesh

(1 (1
| ui+%,j '
® $ — ¢ ®
I, ] i+1, j
! |
(1 (1

Define a control volume around (i+1/2, j). The control
volume spans two pressure nodes (i, j) and (i+1, j). In
the x-direction and (i, j-1/2) to
(i, j+1/2) in the y-direction. The u velocity is centered
between two pressure nodes.
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Continuity Equation

The continuity equation uses C,, C,, at
(i+1/2,j), (i-1/2, j) etc.

(€1, €)1, + (€)1 - (6,1 -

(€)1, = = Js (pudy); 1,
(Cx )i—%,j — fS (puAy)l_%]
(Cy )i,j+% — fS (pVAX)iJ__I_%

(C)' )i,j—% — fS (pvAx).. 1

l,]—i



Advection terms

The x-momentum convection terms can be written
as

0 0
IJ' 5 (puwydxdy + | = (puv)dxdy
~ (Cx )iv1jUiv1j — (Cx )ijU;j
.1, 1U, 1. 1
2 i+3j—3 ttzi—y
For the mass fluxes, we must use normal averaging
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Linear Interpolation

What are the values of Ui, Wig1j, ui%j%,
U, 1. 1°?

"2l
If we use central differencing, or linear averaging,
then

1
U;; =3 (Wir1/2j + Wiz1/2)
1
Uit =3 (ui+3/2,j T ui+1/2,j)
1
Uit1/2j+1/2 = 5 (ui+1/2,j + ui+1/2,j+1)

1
Uit1/2j-1/2 =5 (ui+1/2,j T ui+1/2,j—1)
57



Upwinding

IfC,,is>0 Uir1j = Uit1/2)
IfCyiis <0 U1 =Uiy3/2;
Likewise

IfC,_is>0 Ujj = Ui—1/2

IfC,_is <0 Uijj = Uir1/25

Similarly in the y direction

58



Diffusion Terms

Diffusion terms central differenced as before
fj q du A ou
ax dxdy = po- ax Y

—pu—A
po Ay

X+ X—

Ay
— Ml+1] Ax (ul+— B H__]) Pijn Ax (ul+— B ui—%])
[[ 35y ) asar =mggan| -uy
X U= — U AX
dy YRy ™ A A N

— Hy+ Ay( z+2]+1 z+21) Hy- 7y (ul+;] B ui+—,j—1)
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Complete Equation

Assemble the complete equation as

u _ u u.,. .

+ (pij — Pis1j)Ay
Where the coefficients can be written as (for central
differencing)

u (MDY Ay
Aw _(Ax).j+p"’ 2

— _(Cx )l] ’ (IJA)’) i

60



Coefficients

pAy Ay
A" = (A_x> T Pir1j o Wit
i+1,)

1 pAy
s+ ()
2 F A N Ax v

UAx
As" = <_A —p, 1. 18XV 1.1
Y i+%,i—1 i 2072
1 ( ulAx
=-(C ) 1, 1 ( )
22 iy Ny Ll
1 UAx
ANuz__(C ).1.15( )
2 y l+E,]+E Ay i+%,j+%
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Coefficients with Upwinding

. A

lf Cx >0 Awu = (Cx )i,j ~+ (ﬂ_)’)l]
: u _ (M

if C.<0 Ay ‘(Ax)i,,-

: u _ (P
if(Cy)lis1;>0  Ap = ( ™ )i+1,j

. A
if(Cylis1;<0 A" =(=Cy)i41j + (u)

Ax

Ax Ji+1,j

if(Cy)1, 1>0 As*=(Cy), 1. 1+(M_Ax)

—j—= —j—= .. 1. 1
1+5)—3 1+5J—5 Ay i+ j—
. u _ (ubdx
lf(Cy )i+1,j—1< 0 AS = (_Ay)- 1,1
2”2 1+5.]—5
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Central coefficient

What about 4,? : 4, can be assembled in a similar
way by collecting coefficients.

_ (unAy pAy qu)
Ap_(Ax)- -+(Ax)--+(A 1.1t
i+1j L y l+E,]+§

uAx 1 1
(A ) y — 5 (€ )ij +5(Cx )it
Y l+2’1_5

1
~3(6)1, 1 +5(6y) 1,

63



Central coefficient

Let us make A, diagonally dominant, by
implicitly invoking continuity to the
momentum equation. Then we can subtract
this from 4, and show that

A u — Awu L AEu L ASu L ANu
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Continuity equation

( a a )
jf a(pu)+a—y<pv>jdxdy=o
V
(puly). Wy (pudy). 1t (pvAx), . 1

(pvAx) Y .__ =0

A
-

2

(€)1, —(Cy), 1 +(cy)l]+_ (Cy),. 1=10

t+2J 2 W3
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Truncated Momentum Equations

—_ u u
Ap ul %,] — AW ui_%’j AE ui+%’]‘

u /
+ Ay-u l+§,]'+1

T (P'i,,- - p’,-ﬂ,j) Ay + AxAyS’
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Truncated Momentum Equations

Let us truncate this and write this as

Likewise
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Continuity equation

Write in terms of * and ‘ values

1 (uw+u) 1 Ay—p. (W +u), 1A
PH%J( + )l+%,] y Pl_%,]( + )l_%’] y +
p; i1

Substitute the expressions for u’, v' as pressure
corrections.
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Pressure correction equation

!

Ay /
Py LAY (4, 1. (” ij P i+1i) B

2’ p '_|_1,
A ry 2 ( " )
. 1. -
pl_i'] y (Apu)l_lj l 1] l]
Ax Ax 7 ( )
.. 1 -
pl,]+2 (Apv)ij+1 Lj p i,j+1
.. 1
Lj—5 (Apv)i,j_% l] 1
U 1. Ay—p. 1. U, 1 Ay +
pl—E] l—E]Ay pl+z,] l+E]Ay S
1V 1AX — 0P.. 1D 14X =
pl]—E iLj— pl,]+§ Lj+5 m

69



0NV R WN R

Steps in SIMPLE

. Guessu, v, p
. Form time loop

Solve for u*, v*

Solve for p’
Correctu=u*+u;v=v*+Vv;p=p* +p’;
Repeat 3,4,5 until convergence
Increment time step, solve 3-6

Complete time loop
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Multigrid Methods

72



What are multigrid methods

* Multigrid methods are efficient solvers for such
sets of equations and provide rapid
convergence.

* The multigrid technique is based on the strategy
that the low frequency errors of any grid can be
solved on a coarser grid at a faster rate. The
finer grid solution can then be corrected for the
low frequency errors.

* A large amount of literature exists on multigrid
solution of model elliptic partial-differential
equations.
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Single Grid Convergence

* Each frequency of error converges at a different
rate. High frequency errors converge the fastest.
Low frequency errors converge the slowest.
Convergence is held up by the long wavelength,
low frequency components of the error.

* Each iterative procedure has different rates of
convergence for high and low frequencies. Point
operators are the cheapest in work count, but
convergence is slow for low frequencies.
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Introduction to the multigrid concept

* The objective is to preserve the high frequency
rate of convergence on all grids. Then, if we have
a good solver for the coarse grid, we should be
able to get a fast convergence on finer grids.

* In multigrid method, we have several grids. Each
grid differs from its coarser/finer grid by a factor
of two or more/less number of cells in each
direction.

* The objective is to use all these grids in a
continuous cycling procedure such that the
errors in the solution are resolved efficiently.
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Multigrid technique

The multigrid technique consists of

* Solving for the high frequency errors

e Calculating the low frequency residuals

* Transferring the residuals to coarser grids
* Solving for the corrections on coarser grid
* Transferring corrections to finer grid
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Components of multigrid technique

The main components of a multigrid procedure
are:

* Relaxation (iterative solution procedure)

* Restriction (transferring errors to coarser
grids)

* Prolongation (correcting fine grid solution
using coarse grid corrections)

e Cycling (visiting the grids)
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Multigrid theory

LD =F
Its discretization is given by

h
R"=F - L'o"
Rh-1_p k-1 ph
Lh-1§ph-1 — gh-1 — | h-1ph
L"~1is transport operator on grid (h-1)
¢h ¢h 4+ Ih h 6¢h_1
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2D Finite Difference Grids
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Restriction (Weighted Injection)

RC(iC’jC)
1 R
=5 Re(irdr) + gRe(ip-1Jf) + g Rr(irs1dy)
1 . . 1 . .
+ §Rf(‘f'1f—1) T §Rf(‘f’1f+1)

if=2'ic—1
jfzz'jc_l
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2D Prolongation

For a given coarse grid node, 4 values are updated
br(is.is) = ds(irds) + 8¢c(ic.jo)

b (ips1is) = Sp(ipsrir) +580c(ic o) +58bclicer i)

b (irdran) = bp(ipdpan) +580c(ic o) +58bc(icjert)

Gr(ifr1dre1) = Opliferdpe1) + i6¢c(ic:jc) +

1 . . 1 . 1 . .
16¢c(lc+1r]c+1) + 18¢c(lcr]c+1) + 16¢c(lc+1»]c+1)
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V- and W-cycles

This describes the pattern of visiting the grids.
We consider two such strategies.

V-cycle W-cycle
Relax Yelax
P R
ray
Restrict Prolong Restrict Q@ N Prolong

Relax Relax
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Benefits of Multigrid Cycling

* All frequencies of error are resolved
efficiently.

* The solution efficiency depends only on the
coarsest grid solver and is independent of the
number of the grid levels.

* The work count is predictable if the coarse
grid efficiency is known a priori.

83



Multigrid convergence of heat conduction
equation with Dirichlet conditions

Residual

1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01
1.00E+00
1.00E-01
1.00E-02
1.00E-03
1.00E-04
1.00E-05
1.00E-06
1.00E-07
1.00E-08
1.00E-09

1.00E-10 -

—e—32%32
—=—128%128
——512%512
—=—2048*2048

——4096*4096

S
N

J/

10 15 20
Iteration Number
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Fluid Flow Equations

Nonlinear
Coupled set
Pressure velocity coupling

Many scalar equations in addition to
momentum and continuity

Flows can be high or low speed, laminar or
turbulent, reacting, complex geometry, etc.



Nonlinear Multigrid

 Multigrid methods for nonlinear equations
such as the fluid flow equations can be
developed in the same way as the linear
multigrid except that the L operator is a
function of the solution vector (g). We can
develop a nonlinear multigrid by solving for
corrections and evaluating the L operator
using the solution vector at the top of the V-
cycle, i.e.
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Nonlinear Multigrid

Lh h _ fh
Lh_16qh_1 — II’: 1Rh=1h l(fh_thh)
L1 = LU 'q")

Once 6g"~1 is computed, it is prolongated to
orid h by the prolongation operator I 2_1
q" = q"+ I, 5q""
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FAS Scheme

[h-1§gh-1 — [h-1gh _ (h=1(gh_[hgh)
Add L"1g"~1 to both sides
= [h-1Rh _ Rh-14 fh-1

_ h-1
o (f )modiﬁed



FAS Scheme

e We can now solve for the solution vector

g™~ 1 with the same discretization sequence
as for the general equation

» Solving for g1 means that the same code
structure can be used for every grid. Also, the
nonlinearities can be updated for faster
convergence. R"~1 is the residual in the
interpolated solution. It is calculated from

Iﬁ_lqh only once.

* q"=q" 4l 13q" =0 4 (@ - I "
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Multiple Levels

If there are more than two levels, the same
logic should be used on all coarse grids.
However, when grids (h-2), (h-3) etc. are
considered, the residuals that are restricted
from (h-1) must be calculated using

(



Fluid Flow Equations

* Fluid Flow equations are a strongly coupled
set of equations. For good multigrid
efficiency, not only the transport operator,
but also the pressure-velocity coupling must
be resolved across all wavelengths. Simply
solving one equation at a time efficiently is
NOT sufficient to remove the low frequencies
in the coupling. Basically, the complete set of
equations must be relaxed in a coupled
manner and with the multigrid cycling



Finite Volume Equations

* Apup = YppAnpUnp + D" (Ap)  + S
* ApVp = 2ppAnpVap + D7 (Ap) y T A\

A pressure or pressure correction equation is
solved to calculate the pressure field, given by

ApPp = Xinb Anb Pnp + S
The pressure correction equation can be
written as

ApPp = YnpAnbPnp +S™



Restriction Process

—»f f = fine-grid value
c rse-grid val
N £
N : AN
§ l |
° Fine-grid volume
—e =
f
/ Coarse-grid volume
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Implementation of a Multigrid
SIMPLE

 The SIMPLE algorithm solves the two- (and
three-) dimensional fluid flow equations
using an implicit relaxation procedure.

* In contrast with a time-marching procedure
such as the fractional step method, the
SIMPLE algorithm solves directly for the
steady state (or quasi-steady) flow fields by

iteratively updating the velocities and
pressure fields.
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Multigrid Cycle

Begmn: ig = finest grid number = 1

a)
b)
c)
d)
e)
f)

g)

Perform relaxations on grid ig

Calculate residuals on gnid ig

Restrict solution computed on grid ig to gnid ig + 1
Restrict residual to grid ig + 1

Calculate residual on grid 7ig + 1

Calculate right hand side of the coarse grid equation
Repeat steps (a) to (f) until the coarsest grid 1s reached

The up leg consists of

Begin: jo = coarsest grid = ngrid

a)
b)
c)

d)

Perform relaxations on gnd ig

Calculate changes from restricted finer grid ig + 1 solution
Prolongate changes from the coarser grid to the existing
solution on the finer grid

Decrement grid number ig = ig - 1 and repeat steps (a) to
(c)until ig =1
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Single Grid Rate of Convergence
Square Cavity

X-Momentum Residual

—o— 160 elements

= ——a8— 640 elements 3

—a—— 2560 elements

10~7 i I I | |
0 40 80 120 160 200
Number of Iterations
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Convergence for Square Cavity

Mass Residual

oy
<
W

p—
<
19,1

1077
0 40

?\/\\f’\

——6— 160 elements
——a— 640 elements
——a—— 2560 elements
—o—— 10240 elements
—o- — 1-grid, 2560 elements

80 120 160

Number of Iterations

200

97



Convergence for Triangular Cavity,

Mass Residual

Re =400

—o— 192 elements
—8— 768 elements
—a—— 3072 elements
—o—— 12288 elements
—o- — 1-grid, 3072 elements

80 120

Number of Iterations

160

200 -
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Types of Wavy Channels




Convergence,
64 x 1280 grid, 6 waves, 4 straight sections, 4 levels

Re=300 A=1.2E-3 Re=400 A=1.2E-3
100 & 100
C T, = 700K T, = 700K
—_——  T..,=600K —_——  T..,=600K
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E '\ b
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\ = o= = = Single Grid, T, = 600 K
14 1
E E
T [ he] L
8 o014 8 o014 —_——
x T E r Fly 00T Tmmmemae— it PR
0.01 X 0.01
; | E
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Selected Flow Patterns

Velocity Contours for Re = 300, Twall =500, Amp = 1.2mm
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Convergence

Re=400 A=14E-3

Re=500 A=1.4E-3
100 100 <
T ey = 700 K Ty = 700K
10 i, T GO0 10 4 ——  T..,=600K
T —— Twll:4OOK E =500 K
= === Single Grid, T, =600 K
_ 1 - 1 7
® -~ ®
-
2 e 2
(7] - o e s ) r
& 0.1 et TS & 0.1 -E
0.01 0.01 1
£ N
- \\
0.001 0.001 1 % ~
0.0001 S YT I PP P S SN S -
50 75 100 125 150 175 200 5 10 15 20 25
lteration Number

Iteration Number
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Where Multigrids are applicable

The multigrid concept is most useful for elliptic
partial differential equations.

There is some research literature on hyperbolic
and parabolic problems and on
integrodifferential equations.

For fluid flows, the multigrid technique is
efficient for recirculating flows and for steady
state situations.

Multigrid techniques are applicable for heat
conduction, radiation and equations in
electromagnetics.
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Where Multigrids may be less
rewarding

* Whenever there is not much low frequency
content in the error, the cycling between fine
and coarse grids is less rewarding. This is
because the fine grids perform almost all the
required smoothing.

* For time-dependent (and parabolic) flows the
efficiency depends on the time step (or the
forward step).

 For problems in which the transport operator
may be less important then the source terms
(chemical kinetic equations and turbulence
transport equations).
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EXAMPLES OF INCOMPRESSIBLE
FLOW SIMULATIONS
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Flow in a driven Square Cavity
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Flow in a Triangular Pedestal Cavity

Re = 1000




Flow in a Sinusoidal Cavity

Re=50,h=2A

14 16 ; : : 14 1

Re =100, h=2A/2 Re =1000, h =A/2




Newtonian flow in a 3D cavity with moving top lid

o
w

V on horizontal centerline
I R T L T

o
[}

LT

©
N

0F
015
02"
] mememem Grid 64
'0'3§ ------- Grid 128
-0.4/ MultiGPU 256
I © Kuetal
_05 Fr F F r r v F F F Fr r-r For ¢ r Eor e
0 02 0.4 0.6 0.8 1
z
1 T © T LWLOLI:] LVLeL(tLiqLa! lcl.erl.]terline T
0.8~ -
06~ -
> N
04- -
- mrmemees Grid 64
o2- < Grid i
. MultiGPU 256
N ° Ku et al
—%.5 0 0.5 1

*Ku, H.S., Hirsh, R.S., and Taylor, T.D., “A Psuedo-Spectral Method for Solution of the Three-Dimensional
Incompressible Navier-Stokes Equations,” J. of Computational Physics, Vol. 70, 1987, p. 439.

Streamlines in Symmetry Plane Contour of v in Symmetry Plane
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Numerical Simulation of MHD Flow
in @ Cube with Re = 3200

Wi
7

BC: Insulated & no-slip

walls; Lid velocity U.

03]« - - e 1
02 09
[ 0.8
ol N
Q.7
0 06
> 0.1 =05
02 0.4 h
——N=0.0625 03 —— N=0.0625
.0.3}| -~ - -N=0.0090 ’ { - - - -N=0.0090
————— N=0.2500 a2 \ ---- N=0.2500
0.4 ——N=0.5000 - —— N=0.5000
o N=1.0000 0.1 / R N=1.0000
— N=2.0000 < — N=2.0000
-0'50 0.2 04 06 08 1 -8.4 -0.2 0 02 0.4 06 08
X u
v on horizontal centerline u on vertical centerline
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Flow of a Shear-thinning Fluid
in a long Lid-driving Cavity

0.3

0.2

0.1

Bell & Surana, 1994
Chai et al., 2011
Neofytou,2005
Mendu, 2012
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3D Cube Flow of a non-
Newtonian Fluid

e "
N .0.09
A/ 0.08

0.07
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0.05
0.04
0.03

0.01

002 @
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DNS of Turbulent Flow in Square
Duct

___ outlet

'. L

D 1024 x 160 x 160 mesh
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DNS of Turbulent Flow in Square
Duct
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Urms
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Flow pattern- with MHD
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054
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Mean streamwise vorticity
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Turbulent Pipe Flow
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Application in Film Cooling

periodic \B.C. :
Ls X > Side view

Top view :

t

zero-gradient B.C.
e cross-flow
e <ITs n, |ogios smmla :

| ) "

jet inflow o \, .
T - micro-ramp solid wall
Lig L; L L, periodic B.C.

Instantaneous temperature at mid—Tpa|n y=0
- | e

_____

05 .1 .15 .2 25.3 .35 4 45 .5 .56 6 .65.7 .75 .8 .85 9 .95

Dimensions for
computational domain

7 18.4d
L, 3.0d
L, 4.7d

Lig 2.7d
L;  1.743d
B 1.0d
L,  1.913d
S,  1.573d
H,  0.748d

a 35 degrees
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Bubble rise in a liquid column: effect
of confinement

Time

S
1 () | i |

Transient bubble shapes for confinement ratio of 4 and Mo = 0.001
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Effect of confinement

CR = 3
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Bubble dynamics in non-Newtonian
liquids

.

0.5

Iz 1.0

MR

/&700 -
0 o
2+\

2
Y/D 4 4

3D perspective view of the bubbles at different times for Bo = 2,
Mo = 1E-06, in shear-thinning, Newtonian and shear-thickening fluids.
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Liguid dynamic viscosity

10

8 0.95 0.95
0.85 0.85 z':g

0.75 0.75 ot

P 0.65 0.65 Mg
. 0.55 0.55 & Eb
0.45 0.45 o £5

0.35 0.35 3 50

4 0.25 0.25 > 50
0.15 0.15 . £

0.05 0.05 5. &6

0

4

KN

Liquid’s dynamics viscosity contours att =5 on the yz center plane for
Bo =2, Mo =1E-06 and in shear-thinning, Newtonian and shear-

thickening fluids.
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Wakes and vorticity

[
w
10 :
z
5
- £
side view ‘ front view i front view | front view i
% a 0 4
y x 0 x 4 0 x 4

Iso-surface of z-vorticity att =2, 4 and 8 for shear thinning, Newtonian
and shear thickening fluids. The yellow surface is 10% of maximum

vorticity, the blue surface is 10% of minimum vorticity and the green
surface is bubble. 125



Ar Bubble rise in molten steel with
transverse magnetic field

15 T e o A

X

z

= I ]

) 1 D=3 — =

o ]
16 g i —e— 7mm B=0.0 T |;

T~ o 0.5¢ ——7mm B=0.2 T |,

14 o —— 7mm B=0.5T};
12

3 =01

7/d 1

B=0.2T} ,._
z/d 1|

*figures were submitted to Physics of Fluids



Ar Bubble rise in molten steel with

transverse magnetic field
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LES simulations of Effect of EMBr on Fluid Flow
in the Mold at different Casing Speed

Properties of Steel -

Protective
g Slag Layer

Liguid Steel

BSSSY. ™ Tundish Well
&L (SEN Inlet)

Submerged Entry Nozzle

r
Mold (SEN)
Liquid Mold Flux

% Meniscus
R =Y Submergence o
N Port Angle Depth o
N Y7 Port Height o
% e o %
e 0“3’90\ 2 ort Thickness %
e
W Nozzle

Bore

Liquid Steel
Pool

Solidifying Steel Shell

Continuous Yithdraweal
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Geometry, mesh and BCs

-0.5

Full-mold domain with SEN: 15.6 million cells;

I T

o

o
&)

Boundary Conditions:
— SEN top: velocity inlet;
— Bottom: zero derivative of velocity;
— WEF and NF (shell included in domain as solid):
— Moving downward with casting speed;
— Mass sink added
— Top surface and walls: no penetration and no slip.

—
o

z - distance below meniscus (m)
N

N
&)

Note the SEN inlet area is the “eye-shaped”
intersected region of two circles to include the slide
gate.

05 0 05
X (m)
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Effect of EMBr on Transient flow in Mid and Top Surfaces
(160mm Submergence, Vc = 1.8m/min)

« Transient animation, contour of velocity magnitude (m/s)
« Top surface velocity reduced by ~67% with bottom coil current 850A (B850)

VC1.8m/min-SD160mm-NoEMBr

VC1.8m/min-SD160mm-B850

Time = 22.00s

1.5
1.3
1.1
0.9
0.7
B 0.5
0.3
0.1

=

] Time = 22.00s

=

1.5
1.3
1.1
0.9
0.7
B 0.5
0.3
0.1

_M[-‘

0.1 0.18 0.26 0.34 042 0.5 0.58

06 03 02 0 02 04 056

Time = 22.00s

06 03 02 0 02 04 056
X

Time averaged Max top surface velocity:
~0.51ml/s

Time averaged Max top surface velocity:

~0.17mls
130



High Order Finite
Differencing



High Order Finite Differencing

Higher order accurate stencils can be derived by
Taylor series expansions

A general procedure for stencil derivation is as

follows

Decide first the points that must be included in the
stencil. These can be symmetrical or unsymmetrical,
biased in desired direction. Boundaries, flow direction
are two main reasons for unsymmetrical stencils.

Write Taylor series expansions for the discrete values at
the chosen stencil points.



High Order Finite Differencing

Multiply each expansion by unknown coefficients (a, b, c, d,
...) and add them

Equate the coefficient of the desired derivative to 1 and
coefficients of all other derivatives up to the desired accuracy
to zero

Write a matrix of coefficients and solve for unknowns

Verify that the appropriate highest order term left has the
desired power of (Ax)

Study if error is dissipative or dispersive
Symbolic manipulations can be used



Some High Order Stencils

d —f:. o:+8F..«+: —8f:;: +:.+F: -
_f _ fl+2,] fl+1,] fl 1,j fl 2, +0(AX4)
dxl.j 12 Ax
d? ~fis2i+16f111; —=30f;;i + 16fi_1; —fi—2i
]; _ fl+2,] fl+1,] fl,] fl 1,j fl 2,j +0(AX4)
dx?| 12Ax?
l,j
d3 o —2Fi i+ 2F o —F.
f :fl+2,] fl+1,] fl 1,j fl 2,j +0(Ax2)
dx3| 2Ax3
l,j
d* o — A -+ O6Fi: — A 1+ o
f :fl+2,] fl+1,] fl,] fl 1,j fl 2,j +0(Ax2)
dx* Ax*

l,J



Compact Differencing

Higher order differencing stencils require more grid
points. In complex flow geometries such stencils are
not possible

Compact differencing schemes have limited support.
The stencils are shorter and therefore easier near the
boundaries. They are also higher order accurate.
However, they require slightly more work.



Compact Differencing

Consider the following two stencils

, D,
fn= 1 fn
1 +6h2D+D_

D.D_
f;{=< 1 )fn
1+ﬁh2D+D_
1
Dof, = ﬁ(fn+1 _fn—l)
1
D.fn zﬁ(fn+1 _fn)

1
D—fnzﬁ(fn_fn—l)




Compact Differencing

To implement this, let us write
f;l = Fy

no__
n_Sn

Then multiplying by the denominator

1 2 1 1
an+1 +§Fn +an—1 — ﬁ(fn+1 _fn—l)
1 5 1 1
Esn+1 +gsn +Esn_1 = ﬁ(fn+1 — 2fn+fn—1)

We need to solve tridiagonal equations for F,, and S,,. Use
these in parent equation like N-S equations to get f,,, the
variable



Compact Differencing

1
1
S = f! — — htfVI
n 240 /

If we use the regular finite difference stencil of higher
order

1
F,, = D, (1 — gh2D+D_)fn

1
S,=D.D_(1- Eh21)+1)_)fn



Compact Differencing

The truncation error here is

1
Fu = fn—55h*f"

1
Sn = fri— oo htf"

These expressions have same order of accuracy but
larger stencils



Example of Compact Differencing
(Hirsh, 1975)

Burgers Equation

1
u, + (u — E) U, = VU,

utl — 1\ _ .
At + u_i Fi —vSi

1
_ (Fl+1 + 4'an + le) — (ul+1 l—l)

1
(Sl+1 + 1OSm + Sml) —_ x2 (ul_|_1 Zum + ul 1)

A



Example of Compact Differencing
(Hirsh, 1975)

m can be n or (n+1) based on explicit or implicit

Explicit
C = VAL vat _ 1 1/2
2Ax (6)
vAt 1
=< —
Ax? ~ 2
Implicit
has no stability limit



X
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Example of Compact Differencing

Exact
0.50000
0.68997
0.83202
0.91683
0.96083
0.98201
0.99184
0.99632
0.99834
0.99925

0.50000
0.83202
0.96083
0.99184
0.99834
0.99966
0.99993

0.50000
0.69054
0.83276
0.91744
0.96123
0.98225
0.99197
0.99638
0.99838
0.99927

0.50000
0.83224
0.96082
0.99182
0.99834
0.99966
0.99993

v=1/8
Kreiss(h=0.2) F.D. (h =0.2) F.D. (h =0.05)
0.50000 0.5000
0.69033 0.6999
0.83224 0.8447
0.91687 0.9269
0.96082 0.9673
0.98199 0.9857
0.99182 0.9938
0.99631 0.9973
0.99834 0.9988
0.99925 0.9995
v=1/16
0.50000 0.5000
0.83825 0.9000
0.95933 0.9878
0.99216 0.9986
0.99809 0.9998
0.99974 1.0000
0.99989 1.0000

Comparison of
Computed Values of
Solutions of Burgers’
Equations with Exact
Analytic Results

(Hirsh, 1975)



Driven Cavity (-w formulation)

Calculated Values of the Vorticity at the Moving (Upper) Wall for Various Methods

X= 0.0714 0.1428
A 38.05 20.99
B 34.80 21.00
C 35.36 23.83
D 32.92 21.28
E 24.04 20.04
Note:

0.2143
14.95
15.05
17.18
15.88
16.74

0.2857 0.3571 0.4286

11.59
11.78
13.12
12.49
14.10

9.338
9.591
10.42
10.15
11.97

A — Second order ADI on 57x57 grid
B — Kreiss method with high order boundary conditions on 15x15 grid

C — Kreiss method with low order boundary conditions on 15x15 grid

7.749
8.033
8.568
8.374
10.26

0.5000
6.696
6.927
7.237
7.137
8.916

0.5714 0.6428 0.7143 0.7857 0.8571 0.9286

6.187
6.380
6.613
6.390
7.948

6.317
6.293
6.307
6.192
7.423

7.254
7.226
7.281
6.673
7.477

9.314
8.968
8.414
8.026
8.329

13.45
14.23
13.41
11.14
10.44

25.37
27.63
23.70
24.19
14.86

D — Cubic spline method: R. S. Hirsh, SIAM 1974 Fall meeting, Oct. 23-25, 1974, Alexandria, VA.
E — Second order ADI on 15x15 grid



Higher Order Finite Volume
Methods

Standard finite volume methods have following
characteristics

We solve for average quantities over finite volumes
The flux balances give exact values for the averages

However, we cannot use the local values as
averages in the cell flux calculations




Higher order Finite Volume Methods

Almgen, Aspden, Bell and Minion SIAM J. Sci. Comput
(2013)

We need to reconstruct the cell face values from the
cell average values and then compute the fluxes. This
reconstruction must be done by assuming higher-
order variations of the variables.




Notation

Define
— f X 1,Y,Z d;ydz
i'lé’j’k h? face ( i+% )

V¢l]k — {(¢x) 1 (¢y) K’ @z)i,j,kg}

ConsiderQ; +V-F(Q) =S



Notation

3 d
h® — Qijr +

fH_]k (Q(xH_ Y, Z)) dydz — ji—ilk (Q(xl__ Y, Z)) dydz +

jl]+_ fz( ( l,1+%,k’z)) dxdz—fi 1 f2 (Q(x ,yl = Z)) dxdz +

;j_z;k

2

Jijaertfs (Q(x, V2 )) dxdy = J,;, 1fs3 (Q(x, V2 iyt )dxdy+

Ei,j,khg =0



Cell face Average from Cell Center
Averages

Given all averages, the cell face averages can be computed
to fourth order accuracy as

{ ¢l 1]k+7(¢l]k+¢l+1]k) ¢l+2]k}

¢z+11 k- 12Ax

Derived by integrating a one-dimensional interpolation
formula.



Cell face Average from Cell Averages

(J)x)Hlj " is required in the pressure Poisson equation
2) )

~P o o~
V y V¢l,],k — V y ui,j,k

%

° prgit 3
ijk I1s the u” values

Where q_bi,]-,k is pressure or potential; u
computed at cell faces

(ax) .1

_l+i,j,k
={Pi_1jk + 15(—Pijx + Pir1jk) — Pirzjx}/(124x)



Cell face Average from Cell Averages

This gives a 13 point stencil for the operator or V - V,,

After solving the pressure-Poisson equation , the velocity is
convected as

ﬁi,j,k 1] k Vh¢l] k
And makes V - U;k precisely zero

ﬁi,j,k l] k Vh¢l] k

(¢x)l]k {¢l 2,j,k + 8( ¢l 1,jk + ¢l+1] k) ¢l+2] k} /(12AX)



Computing Nonlinear Terms

Primary difficulty is average of products is not equal to
product of averages. We can include first order variations
and get a fourth order scheme as

- - N Ax? . .
(8P),,1,4= i1 4P ity it g (BaPy + &xP2) + O(RY)

N =

+=jk

Py = {_5¢i+%,j+2,k + 34 (¢i+%,j+1,k - ¢i+%,j—1,k) T

SJ)H%J__ZJ{} /(48Ax)



Diffusion Terms

VD(u*) = vV - Vu'

Vu* is evaluated at cell faces using 4th order

scheme. Then V - ( ) is integrated over the control
volume.

If an implicit method is used, it is brought to left
hand side



Higher Order Temporal Schemes

The traditional fractional step is first order in time.
It can be made second-order by using Adams
Bashforth differencing scheme.

Range Kutta schemes provide higher order temporal
accuracy by taking fractional time steps and
combining solutions.



Higher Order Temporal Schemes

Consider the equation

du
— = F(t

u(t,0) = u® Then
Au' = AtF(t", u™")

1 1
Au'' = AtF(t" + EAt, u + EAu’)

1 1
Au"" = AtF (t" +5 AL Ut + EAu”)
Au'""" = AtF(t" + At,u™ + Au'")

1
u™tl =y + A (Au' + 2Au" + 2Au’"" + Au'""")



Higher Order Temporal Schemes

Stage 1
W= @ o () — o G(pn (/)
V-u* = O
@ = %G(p' _ /)
Stage 2
W =" + %F(tn“/z,u’) _ %G(p')
V-u™“ =20

A~/ ANk k At 17 !/
=4 - 6" —p)



Higher Order Temporal Schemes

Stage 3
u =" + AtF(eV2,u"") — AtG(p'")
V-u™ =0
i\llu — [ — AtG(p/// . p//)
Stage 4

25k kK =~ A A
W = A+ S ut) + T F(e Y0 +

At I/ At rr77 rr7
SF(™ 2 u") + —F(t"*,u™") — AtG(p'")
V . i\l**** — O
ﬁn+1 — T — AtG(pn+1/2 _ pm)



