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Expanding the divergence operator in Cartesian coordinates,
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is an “exchange” coefficient for that scalar and is 

the source term.
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� is a tensor with 9 components; It is however 
symmetric. For a Newtonian fluid,

= (T), a property of the fluid

, etc.

For non-Newtonian fluids, the viscosity is a function of 
the strain rate. Toothpaste, gels, paints, etc. are 
examples non-Newtonian fluids.
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Constant density flows

One-dimensional flow
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Similarly in y direction
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� . Let us assume that all 
the derivatives (to the degree of interest) are also finite. 
Then
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This series can be truncated by dropping all 

derivatives higher than .
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The neglected term lead with 
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All of above can be derived by above procedure
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To Discretize the mixed derivative first write

Then
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We assume that there is an average value for the control volume.
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� ,

at the cell faces.

The finite volume expression so far is EXACT. The
challenge now however is to evaluate the
integral using values computed and stored.
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varies linearly over the of a given

control volume.

Then

The second task is to relate to the calculated at

cell centers. Again if we assume a linear variation in x,
then
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� is constant.

However, that is calculated is not a point value as in

FDM, except that the average is also the midpoint value

only when the variation is linear If k is not constant, FVM

and FDM have different discrete operators.
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� , are evaluated by averaging linearly from

neighbor values. Or can be evaluated using where

is averaged.

Hence

or

and

Either procedure has errors, hard to say which one gives less
error. The second scheme includes more local information.
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Where u is the advection velocity and is the

“exchange” coefficient or diffusion coefficient.
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� and

First order Upwind Interpolation:
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If ,

i - 1 i

i+1/2 

i + 1
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Leonard has further developed new schemes call
UTOPIA, NIRVANA, ULTIMATE, etc.

� - 1 i

i+1/2 

i + 1 i + 2i - 2
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Where , are advection and diffusion
terms in u and v equations This however requires
knowledge of velocity fields that satisfy the
divergence free condition. We need an iterative
procedure to determine u, v and p. Since the
continuity equation is now a constraint, we need to
find a procedure to determine p.
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� oscillation.

32



�

33



�

34



�

Likewise

Continuity equation (i,j):
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Now we can write the continuity equation at (i,j)
as
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Simplifying:
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# , 

satisfy continuity, and
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The and DO NOT satisfy discrete
continuity. The values at and satisfy

discrete continuity, but not the discrete momentum
equations.
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needs to be determined

Continuity at (nx,j):
& '
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) , at collocated grid node positions

• Evaluate , at (i+1/2,j), (i,j+1/2) positions by 
averaging

• Evaluate discrete continuity errors in , at (i,j).

• Solve pressure Poisson equation at grid nodes
(i,j)

• Correct grid node velocities , using
and , , ,

• March to next time step

• Momentum equations are explicit

• Pressure equations solved by SOR or other
iterative solvers.
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and p are not the same, but related.
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Subtracting the u equations from each other

It can be shown that
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- (and p). 

The pressure Poisson equation is ill-
conditioned in the sense that there is one less
equation. The sum of all local continuity
equations is the global continuity equation.
Hence if the (or p) equations is solved
directly, it will come up with an error. Only
iterative solvers can be used. Another option
is to add another equation which fixes the
pressure level at any arbitrary location.
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/ 0 1 2 3i, j
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4 at

(i+1/2, j), (i-1/2, j) etc.
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For the mass fluxes, we must use normal averaging
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6 , , ,

?

If we use central differencing, or linear averaging,
then

57



7 8

Likewise

Similarly in the y direction
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:

Where the coefficients can be written as (for central
differencing)
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;
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< =
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> ? : can be assembled in a similar

way by collecting coefficients.
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? diagonally dominant, by

implicitly invoking continuity to the

momentum equation. Then we can subtract

this from and show that
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A

Likewise
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B

Substitute the expressions for , as pressure

corrections.

68



C

69



71



72



73



74



75



76



77



D

Its discretization is given by

is transport operator on grid (h-1)
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g E F G 1 o grid 2 grid 3
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Relax Relax

Relax Relax

Restrict P M Q S Q T U
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t

= - )

)

Once is computed, it is prolongated to 

grid h by the prolongation operator 
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u = - )

Add to both sides

+ 

= + - + 

=  - + 

= ( )modified
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v with the same discretization sequence 

as for the general equation 

• Solving for means that the same code 

structure can be used for every grid. Also, the 

nonlinearities can be updated for faster 

convergence. is the residual in the 

interpolated solution. It is calculated from 

only once. 

• = + d = -
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w x )modified and not . That is, the 

residuals from previous fine grid are to be 

added to the right hand side before the 

residuals on the coarse grid are computed. 
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y + 

• + 

A pressure or pressure correction equation is 
solved to calculate the pressure field, given by

+ 

The pressure correction equation can be 
written as

+ 
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z { | } | ~ Channel Sinusoidal (Serpentine) Channel

Corrugated Channel Corrugated Channel with rounded corners

Bellowed Channel Arc-Shaped Bellowed Channel
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� � � � � � � � � � � � � � � � � � � � � � � � � � Twall = 500, Amp = 1.2mm
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Re = 100, h = l/2 Re = 1000, h = l/2
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» timestep 0.001 and 100000 timesteps).

• Velocities in symmetry plane of 4-GPU simulation (2563¼ ­ ¤ � £  

with single GPU results with different mesh refinements, (64 ½ ¯

¾ ¿ À 3) and with previous work Ku et al.*
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 � � � 	 � � � � � � � � � � � � � � � � � � � Psuedo-Spectral Method for Solution of the Three-Dimensional 

Incompressible Navier-Stokes Equations,” J. of Computational Physics, Vol. 70, 1987, p. 439.
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N � � � � � N=0.09 N=0.25

N=0.50 N=1.00

v: -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

v on horizontal centerline u on vertical centerline

B0

y

x

z

3D Cavity

U

B � : Insulated & no-slip

walls; Lid velocity U.

L=1

contours of v velocity
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ratios of 2, 3 and 4, Mo = 0.001 and 

Bo = 100. 

Rise velocity f T U V T W f X W Y Z Y W [ U \ [ X T ]

T f o ^ _ \ W ` 4, Mo = 0.001 and a T b

c d d e
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g h i j k l m p q j r for confinement ratios of 2, 3 and 4, Mo = 0.001 and Bo = 100. 
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z s t

y/d x/d

u w {

y/d y/d

| } ~

y/dy/d y/d

t*=7.75 t*=8.00 t*=8.25
z/d

B = 0

B = 0.2T

Ar Bubble rise in molten steel with 

transverse magnetic field

*figures were submitted to Physics of Fluids

g
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� � � x/d y/d x/d y/d x/d

B = 0.0 T B = 0.2 T B = 0.5 T

z/d

ωz = +1 (yellow) and ωz = -1 (green), t=9, for the 7 mm bubble *Submitted to Physics of Fluids127
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� � � � � � � � � � Okazawa et al., 2001

Electromagnetic braking system in Continuous Casting
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Ö Ø Ù Ù -mold domain with SEN: 15.6 million cells;

• Boundary Conditions:
– SEN top: velocity inlet;

– Bottom: zero derivative of velocity;

– WF and NF (shell included in domain as solid): 

– Moving downward with casting speed;

– Mass sink added

– Top surface and walls: no penetration and no slip.

• Note the SEN inlet area is the “eye-shaped” 
intersected  region of two circles to include the slide 
gate.

Ú Û Ü Ý Þ ß Û à Þ (mm)

á â ã Mold Thickness ä å æ

á ç ã Mold Width è å æ æ

á é ã Domain Length ê æ æ æ

ide 

ë z

m/s

t = 5.3s
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High Order Finite 
Differencing

1



High Order Finite Differencing

Higher order accurate stencils can be derived by 
Taylor series expansions

A general procedure for stencil derivation is as 
follows

Decide first the points that must be included in the 
stencil. These can be symmetrical or  unsymmetrical, 
biased in desired direction. Boundaries, flow direction 
are two main reasons for unsymmetrical stencils.

Write Taylor series expansions for the discrete values at 
the chosen stencil points.

2



High Order Finite Differencing
Multiply each expansion by unknown coefficients (a, b, c, d, 
…) and add them

Equate the coefficient of the desired derivative to 1 and 
coefficients of all other derivatives up to the desired accuracy 
to zero

Write a matrix of coefficients and solve for unknowns

Verify that the appropriate highest order term left has the 
desired power of (∆x)

Study if error is dissipative or dispersive

Symbolic manipulations can be used

3



Some High Order Stencils

 
𝑑𝑓

𝑑𝑥
𝑖,𝑗

=
−𝒇𝒊+𝟐,𝒋 + 𝟖𝒇𝒊+𝟏,𝒋 −𝟖𝒇𝒊−𝟏,𝒋 +𝒇𝒊−𝟐,𝒋

12 ∆𝑥
+ 𝑂(∆𝑥4)

 
𝑑2𝑓

𝑑𝑥2

𝑖,𝑗

=
−𝒇𝒊+𝟐,𝒋 + 𝟏𝟔𝒇𝒊+𝟏,𝒋 −𝟑𝟎𝒇𝒊,𝒋 + 𝟏𝟔𝒇𝒊−𝟏,𝒋 −𝒇𝒊−𝟐,𝒋

12∆𝑥2
+ 𝑂(∆𝑥4)

 
𝑑3𝑓

𝑑𝑥3

𝑖,𝑗

=
𝒇𝒊+𝟐,𝒋 − 𝟐𝒇𝒊+𝟏,𝒋 + 𝟐𝒇𝒊−𝟏,𝒋 − 𝒇𝒊−𝟐,𝒋

𝟐∆𝑥3
+ 𝑂(∆𝑥2)

 
𝑑4𝑓

𝑑𝑥4

𝑖,𝑗

=
𝒇𝒊+𝟐,𝒋 − 𝟒𝒇𝒊+𝟏,𝒋 + 𝟔𝒇𝒊,𝒋 − 𝟒𝒇𝒊−𝟏,𝒋 + 𝒇𝒊−𝟐,𝒋

∆𝑥4
+ 𝑂(∆𝑥2)

4



Compact Differencing

Higher order differencing stencils require more grid 
points. In complex flow geometries such stencils are 
not possible

Compact differencing schemes have limited support. 
The stencils are shorter and therefore easier near the 
boundaries. They are also higher order accurate. 
However, they require slightly more work.

5



Compact Differencing

Consider the following two stencils

𝒇𝒏
′ =

𝑫𝟎

𝟏 +
𝟏
𝟔

𝒉𝟐𝑫+𝑫−

𝒇𝒏

𝒇𝒏
′′ =

𝑫+𝑫−

𝟏 +
𝟏
𝟏𝟐

𝒉𝟐𝑫+𝑫−

𝒇𝒏

𝑫𝟎𝒇𝒏 =
𝟏

𝟐𝒉
𝒇𝒏+𝟏 − 𝒇𝒏−𝟏

𝑫+𝒇𝒏 =
𝟏

𝒉
𝒇𝒏+𝟏 − 𝒇𝒏

𝑫−𝒇𝒏 =
𝟏

𝒉
(𝒇𝒏 − 𝒇𝒏−𝟏)

6



Compact Differencing

To implement this, let us write
𝒇𝒏

′ = 𝑭𝒏

𝒇𝒏
′′ = 𝑺𝒏

Then multiplying by the denominator

𝟏

𝟔
𝑭𝒏+𝟏 +

𝟐

𝟑
𝑭𝒏 +

𝟏

𝟔
𝑭𝒏−𝟏 =

𝟏

𝟐𝒉
(𝒇𝒏+𝟏 − 𝒇𝒏−𝟏)

𝟏

𝟏𝟐
𝑺𝒏+𝟏 +

𝟓

𝟔
𝑺𝒏 +

𝟏

𝟏𝟐
𝑺𝒏−𝟏 =

𝟏

𝒉𝟐 (𝒇𝒏+𝟏 − 𝟐𝒇𝒏+𝒇𝒏−𝟏)

We need to solve tridiagonal equations for 𝑭𝒏 and 𝑺𝒏. Use 
these in parent equation like N-S equations to get 𝒇𝒏, the 
variable

7



Compact Differencing

𝑭𝒏 = 𝒇𝒏
′ −

𝟏

𝟏𝟖𝟎
𝒉𝟒𝒇𝑰𝑽

𝑺𝒏 = 𝒇𝒏
′′ −

𝟏

𝟐𝟒𝟎
𝒉𝟒𝒇𝑽𝑰

If we use the regular finite difference stencil of higher 
order

𝑭𝒏 = 𝑫𝟎 𝟏 −
𝟏

𝟔
𝒉𝟐𝑫+𝑫− 𝒇𝒏

𝑺𝒏 = 𝑫+𝑫−(𝟏 −
𝟏

𝟏𝟐
𝒉𝟐𝑫+𝑫−)𝒇𝒏

8



Compact Differencing

The truncation error here is

𝑭𝒏 = 𝒇𝒏
′ −

𝟏

𝟑𝟎
𝒉𝟒𝒇𝑰𝑽

𝑺𝒏 = 𝒇𝒏
′′ −

𝟏

𝟗𝟎
𝒉𝟒𝒇𝑽𝑰

These expressions have same order of accuracy but 
larger stencils

9



Example of Compact Differencing 
(Hirsh, 1975)

Burgers Equation

𝒖𝒕 + 𝒖 −
𝟏

𝟐
𝒖𝒙 = 𝝂𝒖𝒙𝒙

𝒖𝒊
𝒏+𝟏 − 𝒖𝒊

𝒏

∆𝒕
+ 𝒖 −

𝟏

𝟐
𝑭𝒊

𝒎 = 𝝂𝑺𝒊
𝒎

𝟏

𝟔
𝑭𝒊+𝟏

𝒎 + 𝟒𝑭𝒊
𝒎 + 𝑭𝒊−𝟏

𝒎 =
𝟏

𝟐∆𝒙
(𝒖𝒊+𝟏

𝒎 − 𝒖𝒊−𝟏
𝒎 )

𝟏

𝟏𝟐
𝑺𝒊+𝟏

𝒎 + 𝟏𝟎𝑺𝒊
𝒎 + 𝑺𝒊−𝟏

𝒎 =
𝟏

∆𝒙𝟐
𝒖𝒊+𝟏

𝒎 − 𝟐𝒖𝒊
𝒎 + 𝒖𝒊−𝟏

𝒎

10



Example of Compact Differencing 
(Hirsh, 1975)

m can be n or (n+1) based on explicit or implicit

Explicit  

𝑪 =
𝝂∆𝒕

𝟐∆𝒙
≤ (

𝟏

𝟔
)𝟏/𝟐

𝜷 =
𝝂∆𝒕

∆𝒙𝟐
≤

𝟏

𝟐

Implicit 
has no stability limit
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Example of Compact Differencing

12

ν = 1/8
x Exact Kreiss(h=0.2) F.D. (h = 0.2) F.D. (h = 0.05)

0.0 0.50000 0.50000 0.5000 0.50000
0.2 0.68997 0.69033 0.6999 0.69054
0.4 0.83202 0.83224 0.8447 0.83276
0.6 0.91683 0.91687 0.9269 0.91744
0.8 0.96083 0.96082 0.9673 0.96123
1.0 0.98201 0.98199 0.9857 0.98225
1.2 0.99184 0.99182 0.9938 0.99197
1.4 0.99632 0.99631 0.9973 0.99638
1.6 0.99834 0.99834 0.9988 0.99838
1.8 0.99925 0.99925 0.9995 0.99927

ν = 1/ 16
0.0 0.50000 0.50000 0.5000 0.50000
0.2 0.83202 0.83825 0.9000 0.83224
0.4 0.96083 0.95933 0.9878 0.96082
0.6 0.99184 0.99216 0.9986 0.99182
0.8 0.99834 0.99809 0.9998 0.99834
1.0 0.99966 0.99974 1.0000 0.99966
1.2 0.99993 0.99989 1.0000 0.99993

Comparison of 
Computed Values of 
Solutions of Burgers’ 
Equations with Exact 
Analytic Results 

(Hirsh, 1975)



Driven Cavity (ψ-ω formulation)

13

X = 0.0714 0.1428 0.2143 0.2857 0.3571 0.4286 0.5000 0.5714 0.6428 0.7143 0.7857 0.8571 0.9286
A 38.05 20.99 14.95 11.59 9.338 7.749 6.696 6.187 6.317 7.254 9.314 13.45 25.37
B 34.80 21.00 15.05 11.78 9.591 8.033 6.927 6.380 6.293 7.226 8.968 14.23 27.63
C 35.36 23.83 17.18 13.12 10.42 8.568 7.237 6.613 6.307 7.281 8.414 13.41 23.70
D 32.92 21.28 15.88 12.49 10.15 8.374 7.137 6.390 6.192 6.673 8.026 11.14 24.19
E 24.04 20.04 16.74 14.10 11.97 10.26 8.916 7.948 7.423 7.477 8.329 10.44 14.86

Note: 
A – Second order ADI on 57×57 grid
B – Kreiss method with high order boundary conditions on 15×15 grid
C – Kreiss method with low order boundary conditions on 15×15 grid
D – Cubic spline method: R. S. Hirsh, SIAM 1974 Fall meeting, Oct. 23-25, 1974, Alexandria, VA.
E – Second order ADI on 15×15 grid

Calculated Values of the Vorticity at the Moving (Upper) Wall for Various Methods



Higher Order Finite Volume 
Methods

Standard finite volume methods have following 
characteristics

We solve for average quantities over finite volumes

The flux balances give exact values for the averages

However, we cannot use the local values as 
averages in the cell flux calculations

14



Higher order Finite Volume Methods
Almgen, Aspden, Bell and Minion SIAM J. Sci. Comput

(2013)

We need to reconstruct the cell face values from the 
cell average values and then compute the fluxes. This 
reconstruction must be done by assuming higher-
order variations of the variables. 
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Notation

Define

 𝒇
𝒊+

𝟏
𝟐,𝒋,𝒌

=
𝟏

𝒉𝟐
 
𝒇𝒂𝒄𝒆

𝒇(𝒙
𝒊+

𝟏
𝟐

, 𝒚, 𝒛) 𝒅𝒚𝒅𝒛

 𝛁𝝓𝒊,𝒋,𝒌 = {( 𝝓𝒙)𝒊+
𝟏
𝟐,𝒋,𝒌

, ( 𝝓𝒚)
𝒊,𝒋+

𝟏
𝟐,𝒌

, ( 𝝓𝒛)𝒊,𝒋,𝒌+
𝟏
𝟐

}

Consider 𝑸𝒕 + 𝛁 ∙ 𝑭(𝑸) = 𝑺
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Notation
𝒉𝟑 𝒅

𝒅𝒕
𝑸𝒊,𝒋,𝒌 +

 
𝒊+

𝟏
𝟐
,𝒋,𝒌

𝒇𝟏 𝑸 𝒙
𝒊+

𝟏
𝟐,𝒋,𝒌

, 𝒚, 𝒛 𝒅𝒚𝒅𝒛 −  
𝒊−

𝟏
𝟐
,𝒋,𝒌

𝒇𝟏 𝑸 𝒙
𝒊−

𝟏
𝟐,𝒋,𝒌

, 𝒚, 𝒛 𝒅𝒚𝒅𝒛 +

 
𝒊,𝒋+

𝟏
𝟐,𝒌

𝒇𝟐 𝑸 𝒙, 𝒚
𝒊,𝒋+

𝟏
𝟐,𝒌

, 𝒛 𝒅𝒙𝒅𝒛 −  
𝒊,𝒋−

𝟏
𝟐,𝒌

𝒇𝟐 𝑸 𝒙 , 𝒚
𝒊,𝒋−

𝟏
𝟐,𝒌

, 𝒛 𝒅𝒙𝒅𝒛 +

 
𝒊,𝒋,𝒌+

𝟏

𝟐

𝒇𝟑 𝑸 𝒙, 𝒚, 𝒛
𝒊,𝒋,𝒌+

𝟏

𝟐

𝒅𝒙𝒅𝒚 −  
𝒊,𝒋,𝒌−

𝟏

𝟐

𝒇𝟑 𝑸 𝒙, 𝒚, 𝒛
𝒊,𝒋,𝒌−

𝟏

𝟐

𝒅𝒙𝒅𝒚+

 𝑺 𝒊,𝒋,𝒌𝒉𝟑 =  0
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Cell face Average from Cell Center 
Averages

Given all averages, the cell face averages can be computed 
to fourth order accuracy as

 𝝓
𝒊+

𝟏
𝟐,𝒋,𝒌

=
𝟏

𝟏𝟐∆𝒙
{− 𝝓𝒊−𝟏,𝒋,𝒌 + 𝟕  𝝓𝒊,𝒋,𝒌 +  𝝓𝒊+𝟏,𝒋,𝒌 −  𝝓𝒊+𝟐,𝒋,𝒌}

Derived by integrating a one-dimensional interpolation 
formula.
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Cell face Average from Cell Averages

( 𝝓𝒙)𝒊+
𝟏

𝟐
,𝒋,𝒌

is required  in the pressure Poisson equation

𝛁 ∙  𝛁 𝝓𝒊,𝒋,𝒌 =  𝛁 ∙  𝒖𝒊,𝒋,𝒌
∗

Where  𝝓𝒊,𝒋,𝒌 is pressure or potential;  𝒖𝒊,𝒋,𝒌
∗ is the  𝒖∗ values 

computed at cell faces

( 𝝓𝒙)𝒊+
𝟏
𝟐,𝒋,𝒌

=  𝝓𝒊−𝟏,𝒋,𝒌 + 𝟏𝟓 −𝝓𝒊,𝒋,𝒌 + 𝝓𝒊+𝟏,𝒋,𝒌 − 𝝓𝒊+𝟐,𝒋,𝒌 /(𝟏𝟐∆𝒙)
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Cell face Average from Cell Averages

This gives a 13 point stencil for the operator or 𝛁 ∙  𝛁𝒉

After solving the pressure-Poisson equation , the velocity is 
convected as

 𝒖𝒊,𝒋,𝒌 =  𝒖𝒊,𝒋,𝒌
∗ −  𝜵𝒉

∗ 𝝓𝒊,𝒋,𝒌

And makes 𝜵 ∙  𝒖𝒊,𝒋,𝒌 precisely zero

 𝒖𝒊,𝒋,𝒌 =  𝒖𝒊,𝒋,𝒌
∗ −  𝛁𝒉

 𝝓𝒊,𝒋,𝒌

( 𝝓𝒙)𝒊,𝒋,𝒌 = { 𝝓𝒊−𝟐,𝒋,𝒌 + 𝟖 − 𝝓𝒊−𝟏,𝒋,𝒌 +  𝝓𝒊+𝟏,𝒋,𝒌 −  𝝓𝒊+𝟐,𝒋,𝒌} /(𝟏𝟐∆𝒙)
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Computing Nonlinear Terms
Primary difficulty is average of products is not equal to 
product of averages. We can include first order variations 
and get a fourth order scheme as

( 𝝓 𝝆)
𝒊+

𝟏
𝟐,𝒋,𝒌

=  𝝓
𝒊+

𝟏
𝟐,𝒋,𝒌

 𝝆
𝒊+

𝟏
𝟐,𝒋,𝒌

+
∆𝒙𝟐

𝟏𝟐
 𝝓𝒙 𝝆𝒚 +  𝝓𝒙 𝝆𝒛 + 𝑶(𝒉𝟒)

 𝝓𝒚 = {−𝟓 𝝓
𝒊+

𝟏

𝟐
,𝒋+𝟐,𝒌

+ 𝟑𝟒  𝝓
𝒊+

𝟏

𝟐
,𝒋+𝟏,𝒌

−  𝝓
𝒊+

𝟏

𝟐
,𝒋−𝟏,𝒌

+

𝟓 𝝓
𝒊+

𝟏

𝟐
,𝒋−𝟐,𝒌

} /(𝟒𝟖∆𝒙)
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Diffusion Terms

 𝛁𝑫 𝒖∗ = 𝝂 𝛁 ∙  𝛁𝒖∗

 𝛁𝒖∗ is evaluated at cell faces using 4th order 
scheme. Then  𝛁 ∙ ( ) is integrated over the control 
volume.

If an implicit method is used, it is brought to left 
hand side

22



Higher Order Temporal Schemes

The traditional fractional step is first order in time. 
It can be made second-order by using Adams 
Bashforth differencing scheme.

Range Kutta schemes provide higher order temporal 
accuracy by taking fractional time steps and 
combining solutions.
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Higher Order Temporal Schemes
Consider the equation

𝒅𝒖

𝒅𝒕
= 𝑭 𝒕, 𝒖

𝒖 𝒕, 𝟎 = 𝒖𝟎 Then
∆𝒖′ = ∆𝒕𝑭 𝒕𝒏, 𝒖𝒏

∆𝒖′′ = ∆𝒕𝑭(𝒕𝒏 +
𝟏

𝟐
∆𝒕, 𝒖𝒏 +

𝟏

𝟐
∆𝒖′)

∆𝒖′′′ = ∆𝒕𝑭 𝒕𝒏 +
𝟏

𝟐
∆𝒕, 𝒖𝒏 +

𝟏

𝟐
∆𝒖′′

∆𝒖′′′′ = ∆𝒕𝑭 𝒕𝒏 + ∆𝒕, 𝒖𝒏 + ∆𝒖′′′

𝒖𝒏+𝟏 = 𝒖𝒏 +
𝟏

𝟔
(∆𝒖′ + 𝟐∆𝒖′′ + 𝟐∆𝒖′′′ + ∆𝒖′′′′)
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Higher Order Temporal Schemes

Stage 1

 𝒖∗ =  𝒖𝒏 +
∆𝒕

𝟐
𝑭 𝒕𝒏, 𝒖𝒏 −

∆𝒕

𝟐
𝑮(𝒑𝒏−(𝟏/𝟐))

𝛁 ∙  𝒖∗ = 𝟎

 𝒖′ =  𝒖∗ −
∆𝒕

𝟐
𝑮(𝒑′ − 𝒑𝒏−(𝟏/𝟐))

Stage 2

 𝒖∗∗ =  𝒖𝒏 +
∆𝒕

𝟐
𝑭 𝒕𝒏+𝟏/𝟐, 𝒖′ −

∆𝒕

𝟐
𝑮(𝒑′)

𝛁 ∙  𝒖∗∗ = 𝟎

 𝒖′′ =  𝒖∗∗ −
∆𝒕

𝟐
𝑮(𝒑′′ − 𝒑′)
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Higher Order Temporal Schemes

Stage 3

 𝒖∗∗∗ =  𝒖𝒏 + ∆𝒕𝑭 𝒕𝒏+𝟏/𝟐, 𝒖′′ − ∆𝒕𝑮(𝒑′′)

𝛁 ∙  𝒖∗∗∗ = 𝟎

 𝒖′′′ =  𝒖∗∗∗ − ∆𝒕𝑮(𝒑′′′ − 𝒑′′)

Stage 4

 𝒖∗∗∗∗ =  𝒖𝒏 +
∆𝒕

𝟔
𝑭 𝒕𝒏, 𝒖𝒏 +

∆𝒕

𝟑
𝑭 𝒕𝒏+𝟏/𝟐, 𝒖′ +

∆𝒕

𝟑
𝑭 𝒕𝒏+𝟏/𝟐, 𝒖′′ +

∆𝒕

𝟔
𝑭 𝒕𝒏+𝟏, 𝒖′′′ − ∆𝒕𝑮(𝒑′′′)

𝛁 ∙  𝒖∗∗∗∗ = 𝟎

 𝒖𝒏+𝟏 =  𝒖∗∗∗∗ − ∆𝒕𝑮(𝒑𝒏+𝟏/𝟐 − 𝒑′′′)
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